Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+3x+4=0\)
\(\Leftrightarrow x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2=-\dfrac{7}{4}\left(VL\right)\)
Vậy ĐPCM
\(x^2+3x+4=0\Leftrightarrow x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}=0\)
\(\Leftrightarrow x^2+2.x.\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2+\dfrac{7}{4}=0\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}=0\)
Ta có \(\left(x+\dfrac{3}{2}\right)^2\ge0,\forall x\)
\(\Rightarrow\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0,\forall x\)
Vậy phương trình vô nghiệm.
x² + 2x + 3
= x² + 2x + 1 + 2
= (x + 1)² + 2 > 0 với mọi x
Vậy phương trình đã cho vô nghiệm
a:
Thay x=2 vào (1), ta được:
\(2^2-5\cdot2+6=0\)(đúng)
Thay x=2 vào (2), ta được:
\(2+\left(2-2\right)\cdot\left(2\cdot2+1\right)=2\)(đúng)
b: (1)=>(x-2)(x-3)=0
=>S1={2;3}
(2)=>\(x+2x^2+x-4x-2-2=0\)
\(\Leftrightarrow x^2+x-2=0\)
=>(x+2)(x-1)=0
=>S2={-2;1}
vậy: x=3 là nghiệm của (1) nhưng không là nghiệm của (2)
\(x^2-x+2=0\)
\(\Leftrightarrow x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\) (vô lý)
=> Phương trình vô nghiệm
\(x^2\ge0\Rightarrow x^2+1\ge1\Rightarrowđpcm\)
x2+1=0
<=> x2=-1
<=> \(x=\sqrt{-1}\)
Vế trái vô lý. => đpcm