
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(det=\left|\begin{matrix}1&-m\\m&1\end{matrix}\right|=1+m^2\ne0\) với mọi m => Hệ phương trình bậc nhất hai ẩn luôn có nghiệm
b) Ta có:
x0 - my0 = 2 - 4m
mx0 + y0 = 3m + 1
Hay là:
x0 - 2 = m (y0 - 4)
y0 - 1 = m (3 - x0)
=> Chia hai vế cho nhau ta được
\(\frac{x_0-2}{y_0-1}=\frac{y_0-4}{3-x_0}\)
=> (x0 - 2)(3 - x0) = (y0 - 4)(y0 - 1)
=> -x02 + 5x0 - 6 = y02 - 5y0 + 4
=> x02 + y02 - 5(x0 + y0) = -10
ĐPCM

Để hiểu sâu cần bắt nguồn từ cái này: \(\left(a-b\right)^2\ge0\) {gốc lớp 8}
đẳng thức khi a=b
\(\left(a-b\right)^2=a^2+b^2-2ab\ge0\Rightarrow a^2+b^2\ge2ab\)(1) đẳng thức khi a=b
tương tự có \(c^2+d^2\ge2cd\) (2)
đẳng thức khi c=d
hiển nhiên \(\left\{{}\begin{matrix}a^2+b^2\ge0\\c^2+d^2\ge0\end{matrix}\right.\) với mọi a,b,c,d thuộc R
Nhân (1) với (2) => điều cần chứng minh
Đẳng thức khi a=b và c=d
ta có: \(ac+bd\ge2\sqrt{acdb}\Rightarrow\left(ac+db\right)^2\ge4acdb\). nên ta có hệ quả của bất đẳng thức cô-si.
để xảy ra cả bất đẳng thức và hệ quả thì a = b = c = d.

Không mất tính tổng quát giả sử: \(A\ge B\ge C\). Khi đó \(A\ge\dfrac{\pi}{3};C\le\dfrac{\pi}{3}\)
Vì \(\dfrac{\pi}{2}\ge A\ge\dfrac{\pi}{3}\) và \(\pi\ge A+B=\pi-C\ge\dfrac{2\pi}{3}\) nên
\(\left\{{}\begin{matrix}\dfrac{\pi}{2}\ge A\ge\dfrac{\pi}{3}\\\dfrac{\pi}{2}+\dfrac{\pi}{2}\ge A+B\ge\dfrac{\pi}{3}+\dfrac{\pi}{3}\\\dfrac{\pi}{2}+\dfrac{\pi}{2}+0=A+B+C=\dfrac{\pi}{3}+\dfrac{\pi}{3}+\dfrac{\pi}{3}\end{matrix}\right.\)
Xét hàm số \(f\left(x\right)=\cos x\forall x\in\left[0;\dfrac{\pi}{2}\right]\)
Ta có: \(f"\left(x\right)=-\cos x< 0\forall x\in\left[0;\dfrac{\pi}{2}\right]\) nên hàm số \(f\left(x\right)\) lõm trên đoạn \(\left[0;\dfrac{\pi}{2}\right]\). Khi đó, theo BĐT Karamata ta có:
\(f\left(\dfrac{\pi}{2}\right)+f\left(\dfrac{\pi}{2}\right)+f\left(0\right)\le f\left(A\right)+f\left(B\right)+f\left(C\right)\le3f\left(\dfrac{\pi}{3}\right)\)
Hay \(\cos A+\cos B+\cos C\le\dfrac{3}{2}\)

\(\frac{1+sin2x}{sin^2x-cos^2x}=\frac{sin^2x+cos^2x+2sinx.cosx}{\left(sinx-cosx\right)\left(sinx+cosx\right)}=\frac{\left(sinx+cosx\right)^2}{\left(sinx-cosx\right)\left(sinx+cosx\right)}\)
\(=\frac{sinx+cosx}{sinx-cosx}=\frac{\frac{sinx}{cosx}+\frac{cosx}{cosx}}{\frac{sinx}{cosx}-\frac{cosx}{cosx}}=\frac{tanx+1}{tanx-1}\)

Câu 1:
Gọi E là trung điểm của KC
=>AK=KE=EC
Xét ΔBKC có CM/CB=CE/CK
nên ME//BK
Xét ΔAME có AI/AM=AK/AE
nên IK//ME
=>IK//BK
=>B,I,K thẳng hàng
Từ bất đẳng thức Cô- si:
√xy ≤ (x + y)/2 ⇔ x + y ≥ 2√xy với x,y > 0
Dấu bằng xảy ra khi x = y
Do tích xy không đổi nên 2√xy không đổi ⇒ Tổng x + y nhỏ nhất khi và chỉ khi x = y