K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vào link này nhé !!!

Câu hỏi của Võ Văn Phúc Đường - Toán lớp 7 - Học toán với OnlineMath

1 tháng 4 2019

Mik cần hai cách mà bạn

5 tháng 4 2019

A B C E D

-Tam giác ABC cân tại A  có BE và CD là 2 đtt

=> AB=AC => AE=AD

Xét tgABE , tgACD có góc A chung , AE=AD,AB=AC

=> ABE=ACD (c g c)

=>BE=CD

-Tam giác ABC có BE và CD là 2 đtt bằng nhau và cắt tại G

=> EG=DG , BG=CG

\(\Delta DGB\),\(\Delta EGC\) có gocDGB = gocEGC ( 2 góc đối đình) EG=DG, BG=CG

=>\(\Delta DGB\)=\(\Delta EGC\)(c.g.c)

=>BD=EC

Xét \(\Delta EBC\)\(\Delta DCB\)  có: BE=CD , BC chung, BD=EC

=>\(\Delta EBC\)=\(\Delta DCB\) (c.c.c)

=>\(\widehat{EBC}=\widehat{DCB}\)

=> TgABC cân tại A (đpcm)

28 tháng 11 2017

Giải bài 27 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

Giả sử ΔABC có hai đường trung tuyến BM và CN cắt nhau tại G.

⇒ G là trọng tâm của tam giác

Giải bài 27 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

QUẢNG CÁO

Mà BM = CN (theo gt) ⇒ GB = GC ⇒ GM = GN.

Xét ΔGNB và ΔGMC có :

GN = GM (cmt)

GB = GC (cmt)

Giải bài 27 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ΔGNB = ΔGMC (c.g.c) ⇒ NB = MC.

Lại có AB = 2.BN, AC = 2.CM (do M, N là trung điểm AC, AB)

⇒ AB = AC ⇒ ΔABC cân tại A.

31 tháng 3 2016

 Giả sử ∆ABC  có hai đường trung tuyến BM và CN gặp nhau ở G => G là trọng tâm của tam giác  => GB = BM; GC = CN  mà BM = CN (giả thiết) nên GB = GC => ∆GBC cân tại G =>  do đó ∆BCN = ∆CBM vì:  BC là cạnh chung CN = BM (gt)  (cmt) =>   =>  ∆ABC  cân tại A 

31 tháng 3 2016

định lí đảo mà bạn

27 tháng 3 2016

sach toán 7 tập 2 bạn ơi

27 tháng 3 2016

định lí đảo của định lí trên là: trong 1 tam giác cân thì 2 đường trung tuyến nối từ 2 đỉnh ở đáy bằng nhau

giả sử ta có tam giác ABC cân tại A, BD là đường trung tuyến nối từ đỉnh B tới AC( D thuộc AC); CE là đường trung tuyến nối từ đỉnh C tới AB( E thuộc AB) 

suy ra  B=C và

AC=AB suy ra 1/2 AB=1/2AC suy ra EA=EB=DE=DC

xét tam giác DBC và tam giác ECB có:

EB=DC(cmt)

BC(chung)
B=C(tam giác ABC cân tại A)

suy ra tam giac sDBC=ACB(c.g.c)

suy ra EC=BD

19 tháng 4 2017

Giả sử ∆ABC có hai đường trung tuyến BM và CN gặp nhau ở G

=> G là trọng tâm của tam giác

=> GB = BM; GC = CN

mà BM = CN (giả thiết) nên GB = GC

=> ∆GBC cân tại G => GCB^=GBC^

do đó ∆BCN = ∆CBM vì:

BC là cạnh chung

CN = BM (gt)

GCB^=GBC^ (cmt)

=> NBC^=MCB^ => ∆ABC cân tại A

3 tháng 4 2016

giả sử tam giác ABC có 2 đường trung tuyến BM và CN gặp nhau ở G

=> G là trong tâm của tam giác

-> GB=BM ; GC = CN

mà BM=CN (gt) nên GB = GC

=> tam giác GBC cân tại G

Do đó tam giác BCN=tam giác CBM vì:

BC là cạnh chung

CN = BM (gt)

=> tam giác ABC cân tại A

3 tháng 4 2016

xét tam giác ABD và ACE :

E=D (=90o)

CE=BD (gt)

A:chung 

suy ra tam giác ABD =ACE(ch_gn) 

suy ra góc B=C(t/ư)

xét tam giác EIB&DIC:

E=D(=90o)

IE=ID

B=C

suy ra tam giácEIB=DIC

suy ra IB=IC

suy ra tam giác BIC cân tại I, suy ra B=C

suy ra:đpcm