Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vào link này nhé !!!
Câu hỏi của Võ Văn Phúc Đường - Toán lớp 7 - Học toán với OnlineMath
-Tam giác ABC cân tại A có BE và CD là 2 đtt
=> AB=AC => AE=AD
Xét tgABE , tgACD có góc A chung , AE=AD,AB=AC
=> ABE=ACD (c g c)
=>BE=CD
-Tam giác ABC có BE và CD là 2 đtt bằng nhau và cắt tại G
=> EG=DG , BG=CG
\(\Delta DGB\),\(\Delta EGC\) có gocDGB = gocEGC ( 2 góc đối đình) EG=DG, BG=CG
=>\(\Delta DGB\)=\(\Delta EGC\)(c.g.c)
=>BD=EC
Xét \(\Delta EBC\) và \(\Delta DCB\) có: BE=CD , BC chung, BD=EC
=>\(\Delta EBC\)=\(\Delta DCB\) (c.c.c)
=>\(\widehat{EBC}=\widehat{DCB}\)
=> TgABC cân tại A (đpcm)
Giả sử ΔABC có hai đường trung tuyến BM và CN cắt nhau tại G.
⇒ G là trọng tâm của tam giác
QUẢNG CÁO
Mà BM = CN (theo gt) ⇒ GB = GC ⇒ GM = GN.
Xét ΔGNB và ΔGMC có :
GN = GM (cmt)
GB = GC (cmt)
⇒ ΔGNB = ΔGMC (c.g.c) ⇒ NB = MC.
Lại có AB = 2.BN, AC = 2.CM (do M, N là trung điểm AC, AB)
⇒ AB = AC ⇒ ΔABC cân tại A.
Giả sử ∆ABC có hai đường trung tuyến BM và CN gặp nhau ở G => G là trọng tâm của tam giác => GB = BM; GC = CN mà BM = CN (giả thiết) nên GB = GC => ∆GBC cân tại G => do đó ∆BCN = ∆CBM vì: BC là cạnh chung CN = BM (gt) (cmt) => => ∆ABC cân tại A
định lí đảo của định lí trên là: trong 1 tam giác cân thì 2 đường trung tuyến nối từ 2 đỉnh ở đáy bằng nhau
giả sử ta có tam giác ABC cân tại A, BD là đường trung tuyến nối từ đỉnh B tới AC( D thuộc AC); CE là đường trung tuyến nối từ đỉnh C tới AB( E thuộc AB)
suy ra B=C và
AC=AB suy ra 1/2 AB=1/2AC suy ra EA=EB=DE=DC
xét tam giác DBC và tam giác ECB có:
EB=DC(cmt)
BC(chung)
B=C(tam giác ABC cân tại A)
suy ra tam giac sDBC=ACB(c.g.c)
suy ra EC=BD
Giả sử ∆ABC có hai đường trung tuyến BM và CN gặp nhau ở G
=> G là trọng tâm của tam giác
=> GB = BM; GC = CN
mà BM = CN (giả thiết) nên GB = GC
=> ∆GBC cân tại G =>
do đó ∆BCN = ∆CBM vì:
BC là cạnh chung
CN = BM (gt)
(cmt)
=> => ∆ABC cân tại A
giả sử tam giác ABC có 2 đường trung tuyến BM và CN gặp nhau ở G
=> G là trong tâm của tam giác
-> GB=BM ; GC = CN
mà BM=CN (gt) nên GB = GC
=> tam giác GBC cân tại G
Do đó tam giác BCN=tam giác CBM vì:
BC là cạnh chung
CN = BM (gt)
=> tam giác ABC cân tại A
xét tam giác ABD và ACE :
E=D (=90o)
CE=BD (gt)
A:chung
suy ra tam giác ABD =ACE(ch_gn)
suy ra góc B=C(t/ư)
xét tam giác EIB&DIC:
E=D(=90o)
IE=ID
B=C
suy ra tam giácEIB=DIC
suy ra IB=IC
suy ra tam giác BIC cân tại I, suy ra B=C
suy ra:đpcm