Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tích của 1 số vô tỉ và 1 số nguyên dương là 1 số vô tỉ, vì số vô tỉ là số vô hạn không tuần hoàn nên khi nhân với 1 số nguyên dương sẽ là số vô tỉ.
Tích của một số vô tỷ với một số nguyên dương có thể là số hữu tỷ hoặc vô tỷ, tùy thuộc vào giá trị của số vô tỷ và số nguyên dương.
Nếu số vô tỷ là 0, thì tích của nó với bất kỳ số nguyên dương nào cũng sẽ là 0, một số hữu tỷ.
Nếu số vô tỷ giá khác 0, thì tích của nó với một số nguyên dương sẽ là một số vô tỷ. Điều này có thể được giải thích bằng cách giả sử sử dụng số vô tỷ với số nguyên dương là một số hữu tỷ. Khi đó, ta có thể viết số vô tỷ lệ dưới dạng phân số tối thiểu, tức là số và mẫu số không thể chia hết cho bất kỳ số nguyên dương nào. Nhưng khi nhân số vô tỉ với một số nguyên dương, tử số và mẫu số của phân số tối thiểu này sẽ được nhân với số nguyên dương đó, và do đó sẽ có thể chia hết cho số nguyên dương đó. Điều này trái ngược với giả sử ban đầu, do đó số vô tỷ với số nguyên dương không thể là một số hữu tỷ.
Vì vậy, tích của một số vô tỷ với một số nguyên dương có thể là số hữu tỷ hoặc vô tỷ, tùy thuộc vào giá trị của số vô tỷ và số nguyên dương.
1,Chứng minh:
a, √8 là số hữu tỉ
b, √8là số vô tỉ
lấy máy tính tính xong xét
a) x= \(\frac{\left(x+y\right)+\left(x-y\right)}{2}\) ; y= \(\frac{\left(x+y\right)-\left(x-y\right)}{2}\)
Tổng hiệu của hai số hữu tỉ là một số hữu tỉ. Thương của một số hữu tỉ với một số hữu tỉ ( khác 0 ) cũng là một số hữu tỉ. Vậy x, y đều là các số hữu tỉ, không thể là số vô tỉ
b) x và y có thể là số vô tỉ. Chẳng hạn x= \(-\sqrt{2}\) ; y= \(\sqrt{2}\) thì x+y = \(-\sqrt{2}\) + \(\sqrt{2}\) = 0; \(\frac{x}{y}\) = \(\frac{-\sqrt{2}}{\sqrt{2}}\) = -1
chọn A. Vì \(\frac{1}{\sqrt{4}}=\frac{1}{2}\) là số hữu tỉ
con cặc!
Dễ thế mà cũng hỏi trên trường cô tin học nói 3,146.........
vì số đó quá dài nên họ chỉ lấy 2 số ở phần thập phân