Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong hình bên có 3 cặp tam giác đồng dạng là BHA và BAC; CHA và CAB; HAB và HCA.
Ta có:
AC/BC = 3/4,5 = 2/3
DE/EF = 2/3
⇒ AC/BC = DE/EF
∆ABC và ∆DFE có:
AC/BC = DE/EF = 2/3
∠BAC = ∠EDF = 90⁰
⇒ ∆ABC ∽ ∆DFE (cạnh huyền - cạnh góc vuông)
Tam giác ABC và tam giác DEF có:
\( \widehat A = \widehat D = 90^0 \)
\( \frac {AC}{DE} = \frac {BC}{EF} = \frac {3}{2} \)
\( \Rightarrow \Delta ABC \backsim \Delta DFE (ch - cgv) \)
- △ ABC đồng dạng △ HBA
Hai tam giác vuông có góc nhọn ở đỉnh B chung
- △ ABC đồng dạng △ HAC
Hai tam giác vuông có góc nhọn ở đỉnh C chung
- △ ABC đồng dạng △ NMC
Hai tam giác vuông có góc nhọn ở đỉnh C chung
- △ HAC đồng dạng △ NMC
Hai tam giác vuông có góc nhọn ở đỉnh C chung
- △ HAC đồng dạng △ HBA
Hai tam giác vuông có góc nhọn ∠ (HBA) = ∠ (HAC)
- △ HAB đồng dạng △ NCM
Hai tam giác vuông có góc nhọn ∠ (HAB) = ∠ (NCM)
Có:
B A B C = 5 10 = 1 2 ; D E D F = 3 6 = 1 2 ; P Q P R = 4 4 = 1 ⇒ B A B C = D E D F = 1 2
Xét ΔABC và ΔEDF ta có:
B A B C = D E D F (cmt) ⇔ D E B A = D F B C
B = D = 60 ∘ (gt)
=> ΔABC ~ ΔEDF (c - g - c).
Đáp án: A
a) ΔABC ΔHBA vì Â = Ĥ = 90º, B̂ chung
ΔABC ΔHAC vì Â = Ĥ = 90º, Ĉ chung
ΔHBA ΔHAC vì cùng đồng dạng với ΔABC.
b) + ΔABC vuông tại A
⇒ BC2 = AB2 + AC2
(Theo định lý Pytago)
+ΔDEF vuông tại D và ΔD'E'F' vuông tại D’ có:
⇒ ΔDEF ∼ ΔD'E'F' (hai cạnh góc vuông)
*)Áp dụng định lí py ta go vào tam giác A’B’C’ vuông tại A’ có:
A’C’2 + A’B’2 = B’C’2
=> A’C’2 + 22 = 52
Suy ra: A’C’2 = 25 – 4 = 21 nên
*)Áp dụng định lí py ta go vào tam giác ABC vuông tại A có:
AB2 + AC2 = BC2
Thay số: 42 + AC2 = 102
Suy ra: AC2 = 100 – 16 = 84 nên
Do đó, ∆ A’B’C’ đồng dạng với tam giác ABC ( trường hợp 2).