\(x^4-2x^2\) nghịch biến trong khoảng nào sau đây?

A.(-1;0)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

Hàm số \(y=-f\left(x\right)\) đồng biến trên khoảng \(\left(a;b\right)\)

Bài 1 :Cho parabol (P) : y = 2x + 4x parabol có đỉnh là : A/ I(1;1) B/ I (- 1;1) C/ I ( -1;2) D/ I ( 1;- 1) Bài 2: Cho hàm số y= x-4 x + 4 a. Hàm số đồng biến trên (-∞;2) và nghịch biến trên (2;+∞) b. Hàm số đồng biến trên (0;+∞) và nghịch biến trên(-∞;0) c. Hàm số nghịch biến trên(-∞;2) và đồng biến (2;+∞) Số phát biểu đúng là: A. 0 B.1 C. 2 D.3 Bài 3: Cho hàm số y = \(\frac{1}{2}\)x- 2x -1 trong các điểm...
Đọc tiếp

Bài 1 :Cho parabol (P) : y = 2x + 4x parabol có đỉnh là :

A/ I(1;1)

B/ I (- 1;1)

C/ I ( -1;2)

D/ I ( 1;- 1)

Bài 2: Cho hàm số y= x-4 x + 4

a. Hàm số đồng biến trên (-∞;2) và nghịch biến trên (2;+∞)

b. Hàm số đồng biến trên (0;+∞) và nghịch biến trên(-∞;0)

c. Hàm số nghịch biến trên(-∞;2) và đồng biến (2;+∞)

Số phát biểu đúng là:

A. 0

B.1

C. 2

D.3

Bài 3: Cho hàm số y = \(\frac{1}{2}\)x- 2x -1 trong các điểm sau đây Điểm nào thuộc hàm số

A.M (2;3)

B. M (0;-1)

C. M (12;-12)

D. M (1;0)

Bài 4: trục đối xứng của (P): y= x+5x-1

A. X=5

B. X= \(-\frac{5}{2}\)

C. X=\(\frac{5}{2}\)

D. X=-5

Bài 5: giao điểm của (P): y= \(\frac{1}{2}x^2\)-21x-11 với trục tung là:

A. M( 0;2+\(\sqrt{2}\))

B. M(0;-11)

C. M(1;0)

D. M(\(2+\sqrt{2}\);0)

Bài 6: hàm số nào sau đây không phải đường thẳng

A. Y=3x-4

B. Y=5

C. Y= \(\sqrt{2}\) -1

D. Y=(x+1)(x-1)

Bài 7: giao điểm của (P): y=x +5x với trục hoành

A. (-2;3)

B. (0;0)và(-5;0)

C. (-5;0)

D. (0;0)và(0;-5)


0
30 tháng 4 2023

B. Hàm số nghịch biến trên khoảng \(\left(-\infty;-1\right)\)

24 tháng 9 2016

a) D=R

* Nếu x1;x2 \(\in\) \(\left(-\infty;0\right)\); x1\(\ne\) x2

x1> x2 thì x12+2x1+3 <  x22+2x2+3

 <=>       \(\sqrt{x_1^2+2x_1+3}< \sqrt{x_2^2+2x_2+3}\)

<=>         \(f\left(x_1\right)< f\left(x_2\right)\)

Hàm số nghịch biến

5 tháng 10 2020

1.

a, Lấy \(x_1;x_2\in\left(1;+\infty\right)\left(x_1\ne x_2\right)\)

\(\Rightarrow y_1-y_2=x_1^2-x^2_2+2mx_1-2mx_2=\left(x_1-x_2\right)\left(x_1+x_2+2m\right)\)

\(\Rightarrow I=\frac{y_1-y_2}{x_1-x_2}=x_1+x_2+2m\)

Hàm số đồng biến trên \(\left(1;+\infty\right)\) khi \(I>0\Leftrightarrow x_1+x_2+2m>0\)

Do \(x_1;x_2\in\left(1;+\infty\right)\Rightarrow x_1+x_2>2\Rightarrow2m\ge-2\Leftrightarrow m\ge-1\)

b, Lấy \(x_1;x_2\in\left(2;+\infty\right)\left(x_1\ne x_2\right)\)

\(\Rightarrow y_1-y_2=-x_1^2+x^2_2-4mx_1+4mx_2=\left(x_1-x_2\right)\left(-x_1-x_2-4m\right)\)

\(\Rightarrow I=\frac{y_1-y_2}{x_1-x_2}=-x_1-x_2-4m\)

Hàm số nghịch biến trên \(\left(2;+\infty\right)\) khi \(I< 0\Leftrightarrow-x_1-x_2-4m< 0\)

Do \(x_1;x_2\in\left(2;+\infty\right)\Rightarrow-x_1-x_2< 4\Rightarrow-4m\le-4\Leftrightarrow m\ge1\)

5 tháng 10 2020

2.

a, \(f\left(0\right)=m-5;f\left(3\right)=m-8;f\left(1\right)=m-4\)

\(Minf\left(x\right)=\left\{f\left(0\right);f\left(3\right);f\left(1\right)\right\}=m-8=4\)

\(\Rightarrow m=12\)