K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2016

Theo mình:

để hàm số đồng biến, đk cần là y'=0.

a>0 và \(\Delta'< 0\)

nghịch biến thì a<0 

vì denta<0 thì hầm số cùng dấu với a

mình giải được câu a với b

câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb) 

câu d dùng viet

câu e mình chưa chắc lắm ^^

9 tháng 11 2023

Ta có \(y'=-3x^2+6mx\)

Để hàm số đã cho nghịch biến trên \(ℝ\) thì 

\(f\left(x\right)=-3x^2+6mx\le0,\forall x\inℝ\)

Thế thì \(\Delta'=9m^2-\left(-3\right).0\le0\) \(\Leftrightarrow m=0\)

Vậy để hàm số đã cho nghịch biến trên \(ℝ\) thì \(m=0\)

NV
20 tháng 6 2021

\(y'=x^2-2\left(m-2\right)x+m^2-3m+2\)

a. Hàm đồng biến trên khoảng đã cho khi và chỉ khi:

\(y'\ge0\) ; \(\forall x>3\)

\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x>3\)

Ta có: \(\Delta'=\left(m-2\right)^2-\left(m^2-3m+2\right)=-m+2\)

TH1: \(\Delta'\le0\Leftrightarrow m\ge2\)

TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1< x_2\le2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-3m+2-4\left(m-2\right)+4\ge0\\2\left(m-2\right)< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-7m+4\ge0\\m< 4\end{matrix}\right.\) \(\Leftrightarrow m< 2\)

Kết hợp lại ta được hàm đồng biến trên \(\left(2;+\infty\right)\) với mọi m

NV
20 tháng 6 2021

b.

Hàm số đồng biến trên khoảng đã cho khi và chỉ khi:

\(y'\ge0\) ; \(\forall x< 0\)

\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x< 0\)

TH1: \(\Delta'=-m+2\le0\Leftrightarrow m\ge2\)

TH2: \(\left\{{}\begin{matrix}\Delta'>0\\0\le x_1< x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1+x_2=2\left(m-2\right)>0\\x_1x_2=m^2-3m+2\ge0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn

Kết hợp lại ta được: \(m\ge2\)

22 tháng 9 2018

Chọn C

.

nên hàm đồng biến trên khi và chỉ khi:

.

4 tháng 4 2017

Đáp án B

NV
25 tháng 8 2021

\(y'=3x^2-2\left(2m+1\right)x+m^2+2m=\left(x-m\right)\left(3x-m-2\right)\)

\(y'=0\Rightarrow\left[{}\begin{matrix}x=m\\x=\dfrac{m+2}{3}\end{matrix}\right.\)

TH1: \(m=\dfrac{m+2}{3}\Rightarrow m=1\) hàm đồng biến trên R (thỏa mãn)

TH2: \(m< \dfrac{m+2}{3}\Rightarrow m< 1\) hàm đồng biến trên khoảng đã cho khi \(\dfrac{m+2}{3}\le0\Rightarrow m\le-2\)

TH3: \(m>\dfrac{m+2}{3}\Rightarrow m>1\) hàm đồng biến trên khoảng đã cho khi \(m\le0\) (ktm)

Vậy \(\left[{}\begin{matrix}m=1\\m\le-2\end{matrix}\right.\)

25 tháng 8 2021

Em chào anh ạ! 

17 tháng 5 2017

18 tháng 10 2022

Chọn C

17 tháng 10 2017