Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quãng đường xe 1 đi từ A đến lúc 2xe gặp nhau là :
S1=v1.t(km)
Quãng đường xe 2 đi từ B đến lúc 2xe gặp nhau là :
S2=v2.t(km)
Vì 2xe đi nguộc chiều nhau nên :
S1+S2=AB
\(\Rightarrow v_1.t+v_2.t=s\)
\(\Rightarrow t\left(v_1+v_2\right)=s\)
\(\Rightarrow t=\frac{s}{v_1+v_2}\left(h\right)\)
gọi t là thời gian để hai xe chuyển động trên sab
quãng đường đi của xe 1 là:
s1=v1.t(km)
quãng đường đi của xe hai là:
s2=v2.t(km)
vì hai xe đi ngược chiều nhau lên
ta có s1+s2=s
<=>v1.t=v2.t=s
<=>(v1+v2).t=s
<=>t=s/v1+v2(h)
Bài 1:
Gọi S là độ dài \(\dfrac{1}{3}\)đoạn đường
\(\Rightarrow2S\) là độ dài đoạn đường còn lại.
Ta có:
\(V_{tb}=\dfrac{S+2S}{t_1+t_2}=\dfrac{3S}{t_1+t_2}=30\)(*)
Lại có:
\(t_1=\dfrac{S}{V_1}=\dfrac{S}{20}\)
\(t_2=\dfrac{2S}{V_2}\left(2\right)\)
Thay \(\left(1\right),\left(2\right)\) vào (*) ta được:
\(V_{tb}=\dfrac{3S}{t_1+t_2}=\dfrac{3S}{\dfrac{S}{20}+\dfrac{2S}{V_2}}=\dfrac{3}{\dfrac{1}{20}+\dfrac{2}{V_2}}=30\)
\(\Leftrightarrow\dfrac{1}{20}+\dfrac{2}{V_2}=\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{2}{V_2}=\dfrac{1}{20}\Leftrightarrow V_2=40\)(km/h)
Bài 2:
Gọi \(t\) là \(\dfrac{1}{2}\) thời gian
Ta có:
\(V_{tb}=\dfrac{S_1+S_2}{t+t}=\dfrac{S_1+S_2}{2t}\)(*)
\(S_1=V_1.t=25t\left(1\right)\)
\(S_1=V_2.t=35t\left(2\right)\)
Thay \(\left(1\right),\left(2\right)\) vào (*) ta được:
\(V_{tb}=\dfrac{S_1+S_2}{2t}=\dfrac{25t+35t}{2t}=30\)(km/h)
Tóm tắt:
s = 320km
s' = 20km
v1 = 12,5m/s = 45km/h
v2 = 15m/s = 54km/h
____________________
t = ?; t' = ?
Giải:
* Xét trường hợp 2 xe cách nhau 20km khi chưa gặp nhau:
Tổng quãng dường 2 xe đi đuoc là:
s1 = s - s' = 300 (km)
Thời gian họ đã đi là:
t = s1/(v1 + v2) = 100/33 xấp xỉ 3,03 (h)
* Xét TH 2 xe cách nhau 20km khi đã gặp nhau:
Tổng quãng đường họ đã đi là:
s2 = s + s' = 340 (km)
Thời gian họ đã đi là:
t' = s2/ (v1+v2) = 340/99 xấp xỉ 3,43 (h)
Vậy...
a) Đổi: 30 phút=0,5h
Gọi chiều dài quãng đường từ AB là S
Thời gian đi từ A đến B của ô tô 1 là t1
\(t_1=\dfrac{S}{2.v_1}+\dfrac{S.\left(v_1+v_2\right)}{2v_1v_2}\left(a\right)\)
Gọi thời gian đi từ B đến A của xe 2 là t2. Ta có:
\(S=\dfrac{t_1}{2}.v_1+\dfrac{t_2}{2}.v_2=t_2\dfrac{\left(v_1+v_2\right)}{2}\)( b)
Theo bài ra ta có :\(t_1-t_2=0,5\left(h\right)\)
Thay giá trị của vA ; vB vào ta có S = 60 km.
Thay s vào (a) và (b) ta tính được t1=2h; t2=1,5 h
b) Đặt A bằng M, B bằng N
Gọi t là thời gian mà hai xe đi được từ lúc xuất phát đến khi gặp nhau. Khi đó quãng đường mỗi xe đi được trong thời gian t là:
Hai xe gặp nhau khi : SM + SN=SA+SB=S = 60 và chỉ xảy ra khi \(0,75\le t\le1,5\left(h\right)\) .
Từ điều kiện này ta sử dụng (1) và (4): 20t + 15 + ( t - 0,75) 60 = 60
Giải phương trình này ta tìm được \(t=\dfrac{9}{8}\left(h\right)\) và vị trí hai xe gặp nhau cách B là 37,5km nên cách A là 60km-37,5km=22,5(km)
a) Xe đi từ A: s=50.t
Xe đi từ B: s=60-(30.t)
b)\(t=\frac{60}{v_1+v_2}=\frac{60}{50+30}=0,75h\)
vị trí cách A=37,5\(km\)
c)\(t=\frac{60-20}{v_1+v_2}=\frac{60-20}{50+30}=0,5h\)
vị trí xe đi từ A cách A=25\(km\)
a/ Gọi t là thời gian hai xe gặp nhau
Quãng đường mà xe gắn máy đã đi là :
S1= V1.(t - 6) = 50.(t-6)
Quãng đường mà ô tô đã đi là :
S2= V2.(t - 7) = 75.(t-7)
Quãng đường tổng cộng mà hai xe đi đến gặp nhau.
AB = S1 + S2
\(\Leftrightarrow\) AB = 50. (t - 6) + 75. (t - 7)
\(\Leftrightarrow\)300 = 50t - 300 + 75t - 525
\(\Leftrightarrow\)125t = 1125
\(\Leftrightarrow\) t = 9 (h)
\(\Leftrightarrow\) S1=50. ( 9 - 6 ) = 150 km
Vậy hai xe gặp nhau lúc 9 h và hai xe gặp nhau tại vị trí cách A: 150km và cách B: 150 km.
b/ Vị trí ban đầu của người đi bộ lúc 7 h.
Quãng đường mà xe gắn mắy đã đi đến thời điểm t = 7h.
AC = S1 = 50.( 7 - 6 ) = 50 km.
Khoảng cách giữa người đi xe gắn máy và người đi ôtô lúc 7 giờ.
CB =AB - AC = 300 - 50 =250km.
Do người đi xe đạp cách đều hai người trên nên:
DB = CD = \(\frac{CB}{2}=\frac{250}{2}=125\). km
Do xe ôtô có vận tốc V2=75km/h > V1 nên người đi xe đạp phải hướng về phía A.
Vì người đi xe đạp luôn cách đều hai người đầu nên họ phải gặp nhau tại điểm G cách B 150km lúc 9 giờ. Nghĩa là thời gian người đi xe đạp đi là:
rt = 9 - 7 = 2giờ
Quãng đường đi được là:
DG = GB - DB = 150 - 125 = 25 km
Vận tốc của người đi xe đạp là.
V3 = \(\frac{DG}{\Delta t}=\frac{25}{2}=12,5\) km/h
Gọi t là thời điểm hai xe gặp nhau.
Quãng đường mà xe gắn máy đã đi:
S1=V1.(t-6)=50.(t-6)
Quãng đường mà ôtô đã đi:
S2=V2.(t-7)=75.(t-7)
Quãng đường tổng cộng mà hai xe đến gặp nhau:
AB=S1+S2
300 = 50.(t-6) + 75.(t-7)
300 = 50.t - 50.6 + 75.t - 75.7
t = 9h
Vậy hai xe gặp nhau lúc 9h
Cách A số km là:
S1= 50. (9-6)=150 km
Thời gian t(s) | Quãng đường đi được s(cm) | Vận tốc v(cm/s) |
Trong hai giây đầu : t1 = 2 | S1 =….5 | V1 = …2,5 |
Trong hai giây tiếp theo : t2 = 2 | S2 =….5 | V2 = …2,5 |
Trong hai giây cuối : t3 = 2 | S3 =….5 | V3 = …2,5 |
Kết luận :
“Một vật đang chuyển động, nếu chịu tác dụng của lực cân bằng thì sẽ tiếp tục chuyển động thẳng đều”.
giải
đổi 5m/s = 18km/h
a) thời gian để xe đi từ A đến B đi hết 95km
\(t1=\frac{s}{v1}=\frac{95}{40}=2,375\left(h\right)\)
thời gian để xe đi từ B đến A đi hết 95km
\(t2=\frac{s}{v2}=\frac{95}{18}\left(h\right)\)
thời điểm hai xe gặp nhau
\(t=t2-t1=\frac{95}{18}-2,375=\frac{209}{72}\left(h\right)\)
vậy sau \(\frac{209}{72}h\) hai xe gặp nhau
b) điểm gặp cách A số km
\(s’=v1.t=40.\frac{209}{72}=\frac{1045}{9}\left(km\right)\)
A
Sau thời gian t, hai xe gặp nhau thì ta có: s = ( v 1 + v 2 ).t