K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

loading...  loading...  loading...  loading...  

7 tháng 6 2016

  voi thu nhat chay trong 7.5 gio 

voi thu hai chay trong 15 gio

Sửa đề: Chỉ được 1/3 bể

Gọi thời gian chảy một mình đầy bể của vòi 1 là x(giờ), thời gian chảy một mình đầy bể của vòi 2 là y(giờ)

(Điều kiện: x>0 và y>0)

Trong 1 giờ, vòi 1 chảy được \(\dfrac{1}{x}\left(bể\right)\)

Trong 1 giờ, vòi 2 chảy được \(\dfrac{1}{y}\left(bể\right)\)

Trong 1 giờ, hai vòi chảy được 1/18(bể)

=>\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{18}\left(1\right)\)

Trong 4 giờ, vòi 1 chảy được \(4\cdot\dfrac{1}{x}=\dfrac{4}{x}\left(bể\right)\)

Trong 7 giờ, vòi 2 chảy được \(7\cdot\dfrac{1}{y}=\dfrac{7}{y}\left(bể\right)\)

Theo đề, ta có: \(\dfrac{4}{x}+\dfrac{7}{y}=\dfrac{1}{3}\left(2\right)\)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{18}\\\dfrac{4}{x}+\dfrac{7}{y}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x}+\dfrac{4}{y}=\dfrac{2}{9}\\\dfrac{4}{x}+\dfrac{7}{y}=\dfrac{1}{3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{3}{y}=\dfrac{2}{9}-\dfrac{1}{3}=\dfrac{-1}{9}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{18}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=27\\\dfrac{1}{x}=\dfrac{1}{18}-\dfrac{1}{27}=\dfrac{1}{54}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=54\\y=27\end{matrix}\right.\left(nhận\right)\)

Vậy: Thời gian chảy một mình đầy bể của vòi 1 và vòi 2 lần lượt là 54 giờ và 27 giờ

13 tháng 3 2021

Gọi một giờ vòi một chảy đc a phần bể

Vòi 2 chảy được b phần bể

Ta có

\(\left\{{}\begin{matrix}3a+3b=1\\2a+4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6a+6b=2\\6a+12b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6b=1\\3a+3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{3}\\a=\dfrac{1}{3}\end{matrix}\right.\)

Vậy vòi 1 và vòi 2 đều chảy một mình 6h thì đẩy bể

\(15p=0,25h;20p=\dfrac{1}{3}h\)

Gọi thời gian vòi 1 và vòi 2 chảy một mình đầy bể lần lượt là x(giờ) và y(giờ)

(Điều kiện: x>0 và y>0)

Trong 1 giờ, vòi 1 chảy được \(\dfrac{1}{x}\)(bể)

Trong 1 giờ, vòi 2 chảy được \(\dfrac{1}{y}\left(bể\right)\)

Trong 1 giờ, hai vòi chảy được 3/4(bể)

=>\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{4}\left(1\right)\)

Trong 15p=0,25 giờ vòi 1 chảy được:

\(0,25\cdot\dfrac{1}{x}=\dfrac{1}{4}\cdot\dfrac{1}{x}\left(bể\right)\)

Trong 20p=1/3 giờ, vòi 2 chảy được:

\(\dfrac{1}{3}\cdot\dfrac{1}{y}\left(bể\right)\)

Nếu vòi 1 chảy trong 15p và vòi 2 chảy trong 20p thì hai vòi chảy được 5/24 bể nên ta có:

\(\dfrac{1}{4}\cdot\dfrac{1}{x}+\dfrac{1}{3}\cdot\dfrac{1}{y}=\dfrac{5}{24}\left(2\right)\)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{4}\\\dfrac{1}{x}\cdot\dfrac{1}{4}+\dfrac{1}{3}\cdot\dfrac{1}{y}=\dfrac{5}{24}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{1}{4}\cdot\dfrac{1}{x}+\dfrac{1}{4}\cdot\dfrac{1}{y}=\dfrac{3}{16}\\\dfrac{1}{4}\cdot\dfrac{1}{x}+\dfrac{1}{3}\cdot\dfrac{1}{y}=\dfrac{5}{24}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{4}\cdot\dfrac{1}{y}-\dfrac{1}{3}\cdot\dfrac{1}{y}=\dfrac{3}{16}-\dfrac{5}{24}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{1}{y}\cdot\dfrac{-1}{12}=\dfrac{-1}{48}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{4}\\\dfrac{1}{x}=\dfrac{3}{4}-\dfrac{1}{4}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\left(nhận\right)\)

Vậy: Thời gian vòi 1 và vòi 2 chảy một mình đầy bể lần lượt là 2 giờ và 4 giờ

2 tháng 2 2020

Gọi thời gian vòi 1 chảy một mình đầy bể là x ( giờ ) (x>0),thời gian vòi 2 chảy một mình đầy bể là y ( giờ ) (y>0)

Trong 1 giờ vòi 1 chảy được 1/x ( bể)

Trong 1 giờ vời 2 chảy được 1/y (bể)

Trong 1 giờ cả hai vòi chảy được 1/12 ( bể )

=> ta có phương trình 1/x + 1/y = 1/12                            (1)

Trong 4 giờ vòi 1 chảy được 4/x (bể ), trong 3 giờ vòi 2 chảy được 3/y (bể) được 3/10 bể nên ta có 

4/x + 3/y = 3/10                     (2)

Từ (1) và (2) ta có hệ phương trình 

1/x +1/y =1/12

4/x+3/y = 3/10

(từ đây bạn tự giải tiếp nhé,chỉ cần giải xong hệ phương trinh ra x,y là ra kết quả rồi)

14 tháng 8 2023

Đổi 3 giờ 30 phút = 3,5 giờ

Cứ 1 giờ hai vòi chảy được: 1: 3,5 = \(\dfrac{2}{7}\)(bể)

2 giờ hai vòi cùng chảy được: \(\dfrac{2}{7}\) \(\times\) 2 = \(\dfrac{4}{7}\) (bể)

Trong 1 giờ vòi 1 chảy được: \(\dfrac{4}{5}\) - \(\dfrac{4}{7}\) = \(\dfrac{8}{35}\) (bể)

Vòi 1 chảy đầy bể sau: 1 : \(\dfrac{8}{35}\) = \(\dfrac{35}{8}\) (giờ)

Vòi 2 chảy một mình trong 1 giờ được: \(\dfrac{2}{7}\) - \(\dfrac{8}{35}\)  =  \(\dfrac{2}{35}\)(bể)

Vòi 2 chảy đầy bể sau: 1 : \(\dfrac{2}{35}\) = \(\dfrac{35}{2}\) (giờ)

Kết luận:.....

14 tháng 8 2023

Gọi x (h), y(h) lần lượt là thời gian chảy một mình đầy bể của vòi thứ nhất và vòi thứ hai (x, y > 0)

3h 30 phút = 3,5 h

Cả hai vòi cùng chảy trong 1 giờ:

1/x + 1/y = 1/3,5 (1)

Vòi thứ nhất chảy 3h, vòi thứ hai chảy 2h được 4/5 bể nên:

3/x + 2/y = 4/5 (2)

Đặt u = 1/x; v = 1/y

(1) ⇔ u + v = 2/7

⇔ u = 2/7 - v

(2) ⇔ 3u + 2v = 4/5 (3)

Thế u = 2/7 - v vào (3) ta có:

(3) ⇔ 3.(2/7 - v) + 2v = 4/5

⇔ 6/7 - 3v + 2v = 4/5

⇔ -v = 4/5 - 6/7

⇔ -v = -2/35

⇔ v = 2/35

Thế v = 2/35 vào u = 2/7 - v, ta được:

u = 2/7 - 2/35

⇔ u = 8/35

*) Với u = 8/35

⇔ 1/x = 8/35

⇔ x = 35/8 (nhận)

*) Với v = 2/35

⇔ 1/y = 2/35

⇔ y = 35/2 (nhận)

Vậy vòi thứ nhất chảy một mình trong 35/8 h thì đầy bể

Vòi thứ hai chảy một mình trong 35/2 h thì đầy bể

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Lời giải:Giả sử vòi 1 và vòi 2 chảy riêng trong lần lượt $a$ và $b$ giờ thì sẽ đầy bể.

Khi đó, trong 1 giờ thì:

Vòi 1 chảy được $\frac{1}{a}$ bể, vòi 2 chảy được $\frac{1}{b}$ bể.

Theo bài ra ta có:

\(\left\{\begin{matrix} \frac{2}{a}+\frac{3}{b}=\frac{4}{5}\\ \frac{3}{a}+\frac{1,5}{b}=\frac{1}{2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \frac{1}{a}=\frac{1}{20}\\ \frac{1}{b}=\frac{7}{30}\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} a=20\\ b=\frac{30}{7}\end{matrix}\right.\) (h) 

Vậy...........

Gọi x(giờ) là thời gian vòi 1 chảy đầy bể      y(giờ) là thời gian vòi 2 chảy đầy bểTrong 1 giờ thì vòi 1 chảy được \(\dfrac{1}{x}\) bể, còn vòi 2 chảy được \(\dfrac{1}{y}\) bể.(1) Nếu vòi 1 chảy trong 2h, vòi 2 chảy trong 3h thì được\(\dfrac{4}{5}\) bể nên ta có phương trình:

\(\dfrac{1}{x}\) +3 \(\dfrac{1}{y}\) = ​\(\dfrac{4}{5}\)  <=> 2/x + 3/y = 4/5 (bể)

(2) Nếu vòi 1 chảy trong 3h, vòi 2 chảy trong 1h30ph (hay 1,5h) thì được \(\dfrac{1}{2}\)bể nên ta có phương trình: 

3\(\dfrac{1}{x}\)+1,5\(\dfrac{1}{y}\)=\(\dfrac{1}{2}\) <=> 3/x + 1,5/y=1/2 (bể)

 

Từ (1),(2) ta có hệ PT:(3) \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=\dfrac{4}{5}\\\dfrac{3}{x}+\dfrac{1,5}{y}=\dfrac{1}{2}\end{matrix}\right.\)

đặt a=\(\dfrac{1}{x}\)​ ; b= \(\dfrac{1}{y}\) ta có:(3) <=> ​\(\left\{{}\begin{matrix}2a+3b=\dfrac{4}{5}\\3a+1,5b=\dfrac{1}{2}\end{matrix}\right.\)​  *đoạn này tui bấm máy tính* <=> \(\left\{{}\begin{matrix}a=\dfrac{1}{20}\\b=\dfrac{7}{30}\end{matrix}\right.\)   <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{20}\\\dfrac{1}{y}=\dfrac{7}{30}\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=20\\y=\dfrac{30}{7}\end{matrix}\right.\)(nhận)Vậy vòi 1 chảy riêng thì sau 20h thì đầy bể, vòi 2 là 30/7h