Hai tấm kim loại A,
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

25 tháng 2 2016

Số lượng photon đến bản A bằng năng lượng của chùm photon chia cho năng lượng mỗi photon

 

\(N=\frac{Pt}{\varepsilon}\)

 

Số lượng electron bật ra là

 

\(N'=N.H=0,01N\)

 

Số electron đến bản B là

 

\(N''=\frac{q}{e}=\frac{It}{e}\)

 

Tỉ lệ số photon rời A đến được B là

 

\(\frac{N''}{N'}=\frac{I\varepsilon}{eHP}\approx0,218\)

 

Phần trăm rời A mà không đến B là

 

\(\text{1-0.218=0.782=78.2%}\)

8 tháng 3 2016

1) Năng lượng 3,5 eV chính là công thoát A. Ta có:
\(A=3,5eV=5,6.10^{-19}J\)
Bước sóng ánh sáng cần chiếu vào kim loại chính là giới hạn quang điện ứng với kim loại đó: 
        \(\lambda_0=\frac{hc}{\lambda}=0,355\mu m\)
2) Khi dùng ánh sáng đơn sắc trên chiếu vào catôt của tế bào quang điện, năng lượng của phôtôn chỉ dùng để tạo công thoát A nên vận tốc ban đầu \(v_0\) của quang electron bằng 0. Dưới tác dụng của điện trường, công của lực điện trường tác dụng lên electron từ catôt đến anôt cung cấp cho electron động năng khi đến anôt:
          \(\frac{mv^2}{2}=eU\); suy ra vận tốc electron khi đến anôt:
        \(v=\sqrt{\frac{2eU}{m}}=4.10^6m\text{/}s\)

19 tháng 8 2016

Gọi H là đường chân cao hạ từ O đến MN

Giả sử OH = 1 → OM \(=\sqrt[4]{10};ON=\sqrt{10}\)

Do đó tính \(\widehat{MON}\approx1270,35^o\) 

A đúng

 

19 tháng 8 2016

M Q N O

L_Q - L_M = 5 = 10.lg (\frac{OM}{OQ})^2 \Rightarrow \frac{OM}{OQ} = 10^{0,25}

= \frac{1}{Cos \angle QOM}\Rightarrow \angle QOM = 55,78^0

Ta có: L_Q - L_N = 10 = 10.lg (\frac{ON}{OQ})^2

\Rightarrow \frac{ON}{OQ} = 10^{0,5} = \frac{1}{Cos \angle QON}

\Rightarrow \angle QON = 71,56^0

\Rightarrow (\overline{OM}, \overline{ON}) = \angle QOM + \angle QON=127^0

20 tháng 8 2016

Ta có:

\(P=\dfrac{U_{1}^{2}}{Z_{1}^{2}}R\)

\(4P=\dfrac{U_{2}^{2}}{Z_{2}^{2}}R\)

\(\Rightarrow \dfrac{P}{4P}=\left( \dfrac{U_{1}}{U_{2}} \right)^{2}\left( \dfrac{Z_{2}}{Z_{1}} \right)^{2}\)

\(\Leftrightarrow \dfrac{1}{4}=\left(\dfrac{n_{1}}{n_{2}} \right)^{2}\left(\dfrac{Z_{2}}{Z_{1}} \right)^{2}\rightarrow Z_{2}=Z_{1}\)

Ta nghĩ đến bài toán f biến thiên có 2 giá trị của f mạch cho cùng 1 tổng trở.\(\Rightarrow n_{0}=\sqrt{n_{1}n_{2}}=\sqrt{2}n \)

Vậy khi roto quay với tốc độ \(\sqrt{2}n\) mạch xảy ra cộng hưởng.

Công suất: \(P_0=\dfrac{U_{0}^{2}}{R}\)

Lại có:

\(P=\dfrac{U_{1}^{2}}{Z_{1}^{2}}R=\dfrac{U_{1}^{2}}{2R^{2}}R=\dfrac{U_{1}^{2}}{2R}\) (Do \(Z_1=\sqrt 2.R\)

\(\Rightarrow \dfrac{P}{P_{0}}=\dfrac{U_{1}^{2}}{2U_{0}^{2}}=\dfrac{1}{2}\left(\dfrac{n_{1}}{n_{0}} \right)^{2}=\dfrac{1}{4} \Rightarrow P_{0}=4P\)

Vậy: \(P_0=4P\)

20 tháng 8 2016

\(U_0=\omega\phi\)

\(P=I^2R=\left(\frac{U_0}{Z\sqrt{2}}\right)^2R=\frac{\omega^2\phi^2R}{2\left(R^2\left(\omega L-\frac{1}{\omega c}\right)^2\right)}\)

\(=\frac{\phi^2R}{2\left(\frac{R^2}{\omega^2}+\left(L-\frac{1}{\omega^2c}\right)^2\right)}=\frac{\phi^2R}{2\left(\frac{1}{\omega^4C^2}+\frac{R^2-2L}{\omega^2}+L^2\right)}\)

Do đó: \(\phi\) không đổi. Đặt : \(\frac{1}{\omega^2}=x\)

Xét f (x) \(=\frac{x^2}{C^2}+\left(R^2-2L\right)x+2L^2\)

=> P_max \(\Leftrightarrow x_0=\frac{2L-R^2}{2C^2}\)

Do P phụ thuộc hàm bậc 2 nên

\(P_1=P_2\Rightarrow x_1+x_2=2x_0\Leftrightarrow\frac{1}{\omega^2_1}+\frac{1}{\omega^2_2}=\frac{2}{\omega^2_0}\)

Mặt khác, tốc độ quay của rôto tỉ lệ thuận với tần số góc nên

\(\frac{1}{n^2_1}+\frac{1}{n^2_2}+\frac{1}{n^2_0}\Leftrightarrow n_0=2\frac{n^2_1n^2_2}{n^2_1+n^2_2}\)

3 tháng 5 2016

Khi các vân sáng trùng nhau:   \(k_1\lambda_1=k_2\lambda_2=k_3\lambda_3\)

                                                  k10,4 = k20,5 = k30,6 \(\Leftrightarrow\) 4k1 = 5k2 = 6k3 

BSCNN(4,5,6) = 60

\(\Rightarrow\) k1 = 15 ; k2 = 12 ; k3 = 10 Bậc 15 của \(\lambda_1\) trùng bậc 12 của \(\lambda_2\) trùng với bậc 10 của \(\lambda_3\)

Trong khoảng giữa phải có:  Tổng số VS tính toán = 14 + 11 + 9 = 34

Ta xẽ lập tỉ số cho tới khi   k1 = 15 ; k2 = 12 ; k3 = 10

  - Với cặp \(\lambda_1;\lambda_2:\) \(\frac{k_1}{k_2}=\frac{\lambda_1}{\lambda_2}=\frac{5}{4}=\frac{10}{8}=\frac{15}{12}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k1 = 15 ; k2 = 12  thì có tất cả 4 vị trí trùng nhau

Vị trí 1: VSTT  

Vị trí 2:  k1 = 5 ; k2 = 4

Vị trí 3:  k1 = 10 ; k2 = 8                    => Trong khoảng giữa có 2 vị trí trùng nhau.

Vị trí 4:  k1 = 15 ; k2 = 12

  - Với cặp\(\lambda_2;\lambda_3:\)  \(\frac{k_2}{k_3}=\frac{\lambda_3}{\lambda_2}=\frac{6}{5}=\frac{12}{10}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k2 = 12 ; k3 = 10  thì có tất cả 3 vị trí trùng nhau

Vị trí 1: VSTT  

Vị trí 2:  k2 = 6 ; k3 = 5                     \(\Rightarrow\) Trong khoảng giữa có 1 vị trí trùng nhau.

Vị trí 3:  k2 = 12 ; k3 = 10

- Với cặp \(\lambda_1;\lambda_3:\)    \(\frac{k_1}{k_3}=\frac{\lambda_3}{\lambda_1}=\frac{3}{2}=\frac{6}{4}=\frac{9}{6}=\frac{12}{8}=\frac{15}{10}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k1 = 15 ; k3 = 10  thì có tất cả 6 vị trí trùng nhau

Vị trí 1: VSTT 

Vị trí 2:  k1 = 3   ;  k3 = 2

Vị trí 3:  k1 = 6   ;  k3 = 4

Vị trí 4:  k1 = 9   ;  k3 = 6                                     \(\Rightarrow\) Trong khoảng giữa có 4 vị trí trùng nhau.

Vị trí 5:  k1 = 12 ;  k3 = 8

Vị trí 6:  k1 = 15 ;  k3 = 10

Vậy tất cả có 2 + 1 +4 = 7 vị trí trùng nhau của các bức xạ.

Số VS quan sát được = Tổng số VS tính toán – Số vị trí trùng nhau       = 34 – 7 = 27 vân sáng.  

\(\rightarrow D\)   

3 tháng 5 2016

ok

10 tháng 3 2016

Giới hạn quang điện là bước sóng lớn nhất chiếu vào kim loại mà gây ra hiệu ứng quang điện phụ thuộc vào bản chất kim loại nên đáp án là B

7 tháng 12 2015

Áp dụng công thức: \(R_1+R_2=\frac{U^2}{P}\)

\(\Rightarrow P=\frac{U^2}{R_1+R_2}=\frac{100^2}{100}=100W\)

7 tháng 12 2015

Chọn D

31 tháng 7 2016

Vì có điện trở thuần nên dao động trong mạch tắt dần do tỏa  nhiệt ở điện trở. Để duy trì dao động điều hòa phải bổ sung cho mạch một năng lượng có công suất đủ bì vào phần năng lượng hao phí do tỏa nhiệt (hiệu ứng J un) trên điện trở, phần này có công suất là: \(\Delta P=I^2.R\)
Khi cùng cấp năng lượng đó, ta có: \(\frac{1}{2}CU^2_0=\frac{1}{2}LI^2_0\)
Mà: \(^{U=\frac{U_0}{\sqrt{2}}}_{I=I_{\frac{0}{\sqrt{2}}}}\)\(\rightarrow I^2=\frac{C}{L}.U^2\)
\(P=I^2R=\frac{CR}{L}U^2=\frac{CRU^2_0}{2L}\)
\(\Rightarrow P=137\mu W\)

chọn B

1 tháng 8 2016

Hỏi đáp Vật lý

8 tháng 3 2016

Khoảng vân \(i'=\frac{i}{n'}=\frac{\lambda D}{1,33.a}=\frac{0,5.10^{-3}.10^{-3}}{1,33.2}=1,88mm\)