Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Biên độ dao động tổng hợp phụ thuộc vào độ lệch pha Δφ = φ2 - φ1
Nếu hai dao động thành phần ngược pha: Δφ = φ2 - φ1 = (2n + 1)π (n = 0, ± 1,± 2,…) thì biên độ dao động tổng hợp là nhỏ nhất A = |A1 - A2 |
a)
Hai dao động thành phần cùng pha: biên độ dao động tổng hợp là lớn nhất và bằng tổng hai biên độ: A1 + A2 = A
b)
Hai dao động thành phần ngược pha: biên độ dao động tổng hợp là nhỏ nhất và bằng giá trị tuyệt đối của hiệu hai biên độ: |A1 - A2|=A
c)
Hai dao động có thành phần có pha vuông góc: √ (A12 + A22) = A
HT :vvv

TL
a) Hai dao động thành phần cùng pha: biên độ dao động tổng hợp là lớn nhất và bằng tổng hai biên độ: A=A1+A2
b) Hai dao động thành phần ngược pha: biên độ dao động tổng hợp là nhỏ nhất và bằng giá trị tuyệt đối của hiệu hai biên độ: A=|A1−A2|
c) Hai dao động có thành phần có pha vuông góc:
A=A12+A22

Từ đề bài ta suy ra M và N là vị trí có li độ \(\frac{\left|A\right|\sqrt{3}}{2}\)
\(\rightarrow\frac{T}{6}=0,05s\rightarrow T=0,3s\)
Ta có :
\(\upsilon=\frac{\upsilon_{max}}{2}\rightarrow\upsilon_{max}=40\pi\left(cm\text{ / s }\right)\rightarrow A\text{ω }=A.\frac{2\pi}{T}=40\pi\)
→ A = 6cm

Nhiệt lượng
\(Q=I^2Rt=\frac{E^2_0t}{2R}=\frac{\left(\omega NBS\right)^2t}{2R}=\frac{\left(200.100\pi.0,002\right)^2.60}{2.1000}\)\(=474J\)

Động năng: \(W_đ=\dfrac{1}{2}m.v^2=\dfrac{1}{2}.9,1.10^{-31}.(5,8.10^5)^2=1,53.10^{-19}(J)\)
Có: \(W_đ=e.U_h\Rightarrow U_h=\dfrac{1,53.10^{-19}}{1,6.10^{-19}}=0,96V\)
Ta có:
\(P=\dfrac{U_{1}^{2}}{Z_{1}^{2}}R\)
\(4P=\dfrac{U_{2}^{2}}{Z_{2}^{2}}R\)
\(\Rightarrow \dfrac{P}{4P}=\left( \dfrac{U_{1}}{U_{2}} \right)^{2}\left( \dfrac{Z_{2}}{Z_{1}} \right)^{2}\)
\(\Leftrightarrow \dfrac{1}{4}=\left(\dfrac{n_{1}}{n_{2}} \right)^{2}\left(\dfrac{Z_{2}}{Z_{1}} \right)^{2}\rightarrow Z_{2}=Z_{1}\)
Ta nghĩ đến bài toán f biến thiên có 2 giá trị của f mạch cho cùng 1 tổng trở.\(\Rightarrow n_{0}=\sqrt{n_{1}n_{2}}=\sqrt{2}n \)
Vậy khi roto quay với tốc độ \(\sqrt{2}n\) mạch xảy ra cộng hưởng.
Công suất: \(P_0=\dfrac{U_{0}^{2}}{R}\)
Lại có:
\(P=\dfrac{U_{1}^{2}}{Z_{1}^{2}}R=\dfrac{U_{1}^{2}}{2R^{2}}R=\dfrac{U_{1}^{2}}{2R}\) (Do \(Z_1=\sqrt 2.R\))
\(\Rightarrow \dfrac{P}{P_{0}}=\dfrac{U_{1}^{2}}{2U_{0}^{2}}=\dfrac{1}{2}\left(\dfrac{n_{1}}{n_{0}} \right)^{2}=\dfrac{1}{4} \Rightarrow P_{0}=4P\)
Vậy: \(P_0=4P\)
\(U_0=\omega\phi\)
\(P=I^2R=\left(\frac{U_0}{Z\sqrt{2}}\right)^2R=\frac{\omega^2\phi^2R}{2\left(R^2\left(\omega L-\frac{1}{\omega c}\right)^2\right)}\)
\(=\frac{\phi^2R}{2\left(\frac{R^2}{\omega^2}+\left(L-\frac{1}{\omega^2c}\right)^2\right)}=\frac{\phi^2R}{2\left(\frac{1}{\omega^4C^2}+\frac{R^2-2L}{\omega^2}+L^2\right)}\)
Do đó: \(\phi\) không đổi. Đặt : \(\frac{1}{\omega^2}=x\)
Xét f (x) \(=\frac{x^2}{C^2}+\left(R^2-2L\right)x+2L^2\)
=> P_max \(\Leftrightarrow x_0=\frac{2L-R^2}{2C^2}\)
Do P phụ thuộc hàm bậc 2 nên
\(P_1=P_2\Rightarrow x_1+x_2=2x_0\Leftrightarrow\frac{1}{\omega^2_1}+\frac{1}{\omega^2_2}=\frac{2}{\omega^2_0}\)
Mặt khác, tốc độ quay của rôto tỉ lệ thuận với tần số góc nên
\(\frac{1}{n^2_1}+\frac{1}{n^2_2}+\frac{1}{n^2_0}\Leftrightarrow n_0=2\frac{n^2_1n^2_2}{n^2_1+n^2_2}\)