Hai nguồn sóng tại A và B hai nguồn sóng kết hợp cách nhau 10cm trên...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2016

Ta có \lambda = \frac{9}{f} = 2
Và \frac{- S_1S_2}{\lambda } < k < \frac{ S_1S_2}{\lambda } (k \epsilon N) => có 9 điểm

28 tháng 7 2016

Gọi hình chiếu của điểm M trên AB là N, trung điểm của AB là O, đặt ON = x \(\Rightarrow\) \(AM=\sqrt{4+\left(4-x\right)^2}\)\(,BM=\sqrt{4+\left(4+x\right)^2}\)
\(\vartheta BM=\frac{2\pi BM}{\lambda}\)
\(\vartheta AM=\frac{2\pi AM}{\lambda}\)
\(\Rightarrow\frac{2\pi}{\lambda}\left(MB-MA\right)=\left(2k+1\right)\lambda\pi\)
Min khi k = 0 \(\Leftrightarrow\sqrt{4+\left(4+x\right)^2}-\sqrt{4+\left(4-x\right)^2}\)\(=1\Rightarrow x\approx0,56\left(cm\right)\)

chọn đáp án A

10 tháng 11 2015

\(\lambda =\frac{v}{f}=\frac{50}{10}=5cm.\)

Điểm M ngược pha với điểm I khi: \(\triangle \phi=\phi_I-\phi_M = 2\pi \frac{d_1-d_{1}^{'}}{\lambda}=(2k+1)\pi \Rightarrow d_1-d_1^{'}=(2k+1)\frac{\lambda}{2}\) 

Để điểm M gần I nhất thì hiệu d1 - d1' cũng phải nhỏ nhất khi đó k chỉ nhận giá trị nhỏ nhất là k = 0.

\(d_{1}-d_{1}^{'}=(2.0+1)\frac{5}{2}=2.5cm\Rightarrow d_1 = 7.5cm.\)

\(\Rightarrow MI= \sqrt {d_1^{2}-d_1^{'2}}\) = \(\sqrt{7.5^2-2.5^2}=\sqrt{50}cm\)

16 tháng 11 2015

Số điểm cực đại trên đoạn AG là số giá trị k thỏa mãn \(-AG \leq (k+\frac{\triangle \phi}{2\pi})\lambda \leq AG \Rightarrow -\frac{AB}{4}.3=10.875cm \leq (k+0.5)\lambda \leq 10.875\\ \Rightarrow -5.94 \leq k \leq 4.94 \Rightarrow k = -5,-4,\ldots,0,1,\ldots,4\)

có 10 điểm dao động cực đại trên đoạn AG

17 tháng 9 2015

Hai nguồn sóng vuông pha, cùng biên độ => \(\triangle \varphi = \frac{\pi}{2}.\)

Biên độ sóng tại M là \( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{(7.25-12.5)\lambda}{\lambda}-\frac{\pi/2}{2\pi})| =|2a.\cos(\frac{-3\pi}{4})|= a\sqrt{2}\)

11 tháng 9 2015

 \(\lambda = v/f = 80/20 = 4cm.\)

\(\triangle \varphi = \pi-0=\pi.\)

Nhận xét: \(BM-AM=(BI+IM)-(AI-IM)=2MI\)

\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{BM-AM}{\lambda}-\frac{\triangle\varphi}{2\pi})|\\=|2a\cos\pi(\frac{2MI}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{6}{4}-\frac{\pi}{2\pi})| = |-2a|=2a=10 mm.\)

23 tháng 4 2017

A

28 tháng 7 2016

\(E=\frac{1}{2}\omega^2A^2\) nên vận tốc truyền sóng không ảnh hưởng.

chọn D

17 tháng 12 2016

a)\(U_M=2Acos\left(\pi\frac{\left(d_2-d_1\right)}{\lambda}\right)\) \(cos\left(\omega t-\pi\frac{d_1+d_2}{\lambda}\right)\)

thay số vào ta đc

\(U_M=\frac{\sqrt{2}}{2}cós\left(20\pi t-\frac{29\pi}{4}\right)\)

b) số cực đại \(\frac{-AB}{\lambda}\le n\le\frac{AB}{\lambda}\)

nên \(-2,75\le n\le2,75\)

có 5 giá trị n nguyên, vậy số cực đại là 5

số cực tiểu \(\frac{-AB}{\lambda}-\frac{1}{2}\le n\le\frac{AB}{2}-\frac{1}{2}\)

thay số tương tự nhé

 

17 tháng 12 2016

ừ thì bước sóng bằng 8cm đúng rồi

còn d2 với d1 thì k quan trọng đâu, lấy cái nào trừ cái nào cũng đc

 

19 tháng 8 2016

Hai điểm có cùng biên độ 2 mm đối xứng nhau qua nút gần nhất và hai điểm có biên độ 3 mm nằm đồi xứng nhau qua bụng gần nhất. Áp dụng công thức tình biên độ điểm, ta có hệ phương trình:

x = \frac{\lambda }{2}; \left\{\begin{matrix} 2 = A cos \frac{\pi}{x}.5\\ 3 = A sin\frac{\pi}{x}.5\end{matrix}\right.

\rightarrow A^2 = 2^2 + 5^2 \rightarrow A = \sqrt{29}mm \rightarrow x \approx 23 cm

19 tháng 8 2016

Gọi biên độ sóng tại bụng là 2a.

Ta có : \(\frac{1}{a^2}=\frac{9}{4a^2}=1\rightarrow a=\frac{2}{\sqrt{13}}\) 

Xét: \(2a\sin\frac{2\pi x}{\lambda}=2\rightarrow2\lambda=54cm\Rightarrow\lambda=27cm\)

Vậy chọn đáp án A.