Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lambda=\frac{v}{f}=\frac{12}{5}=2.4cm\)
Số điểm cực đại trong đoạn MN chính là số giá trị k thỏa mãn \(NO_{2}-NO_{1} \leq d_{2}-d_{1} \leq MO_{2}-MO_{1} \Rightarrow -12 \leq (k+ \frac{\triangle \phi}{2\pi})\lambda \leq 7\\ \Rightarrow -5.25 \leq k \leq 2.7 \)
=> k = -5,-4,-3,-2,-1,0,1,2. Có 8 vân cực đại trong đoạn MN.
Số điểm cực tiểu trong đoạn MN:
\(NO_{2}-NO_{1} \leq d_{2}-d_{1} \leq MO_{2}-MO_{1} \Rightarrow -12 \leq (2k+1+ \frac{\triangle \phi}{\pi})\frac{\lambda}{2} \leq 7\\ \Rightarrow -5.75\leq k \leq 2.16\)
=>k = -5,...,0,1,2. Có 8 vân cực tiểu trong đoạn MN.
\(\lambda = v/f = 80/20 = 4cm.\)
\(\triangle \varphi = \pi-0=\pi.\)
Nhận xét: \(BM-AM=(BI+IM)-(AI-IM)=2MI\)
\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{BM-AM}{\lambda}-\frac{\triangle\varphi}{2\pi})|\\=|2a\cos\pi(\frac{2MI}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{6}{4}-\frac{\pi}{2\pi})| = |-2a|=2a=10 mm.\)
\(\lambda =\frac{v}{f}=\frac{50}{10}=5cm.\)
Điểm M ngược pha với điểm I khi: \(\triangle \phi=\phi_I-\phi_M = 2\pi \frac{d_1-d_{1}^{'}}{\lambda}=(2k+1)\pi \Rightarrow d_1-d_1^{'}=(2k+1)\frac{\lambda}{2}\)
Để điểm M gần I nhất thì hiệu d1 - d1' cũng phải nhỏ nhất khi đó k chỉ nhận giá trị nhỏ nhất là k = 0.
\(d_{1}-d_{1}^{'}=(2.0+1)\frac{5}{2}=2.5cm\Rightarrow d_1 = 7.5cm.\)
\(\Rightarrow MI= \sqrt {d_1^{2}-d_1^{'2}}\) = \(\sqrt{7.5^2-2.5^2}=\sqrt{50}cm\)
Tại P dao động cực tiểu khi \(d_{2}-d_{1}=(2k+1+\frac{\triangle \phi}{\pi})\frac{\lambda}{2}.\)
Tại P dao động cực đại khi \(d_{2}-d_{1}=(k+\frac{\triangle \phi}{2\pi})\lambda.\)
Tại M là vân lồi bậc k và tại N là vân lồi bậc k + 3 =>\(MA-MB=(k+0.5)\lambda=12.25\\ NA-NB=(k+3+0.5)\lambda=33.25\\ \)
\(\Rightarrow 3\lambda=33.25-12.25=21 \Rightarrow \lambda=7mm.\)
Số điểm cực đại giao thoa trên đoạn AB là \(-AB\leq (k+\frac{1}{2})\lambda\leq AB \Rightarrow \frac{-AB}{\lambda}-0.5 \leq k \leq \frac{AB}{\lambda}\)
=> có 14 điểm cực đại giao thoa kể cả A và B.
Đáp án A
Ta có λ = v/f = 40/20 = 2 cm.
Hai nguồn dao động ngược pha → số cực đại trên EF thỏa mãn điều kiện
- 5 ≤ ( 2 k + 1 ) λ 2 ≤ 5 → - 3 ≤ k ≤ 2
Có 6 giá trị k nguyên → trên EF có 6 cực đại giao thoa.
Bước sóng \(\lambda = v/f = 1/25 = 0.04m = 4cm.\)
Độ lệch pha giữa hai nguồn sóng là \(\triangle\varphi= \varphi_2-\varphi_1 = \frac{5\pi}{6}+\frac{\pi}{6} = \pi.\)
Biên độ sóng tại điểm M là \( A_M = |2a\cos\pi(\frac{10-50}{4}-\frac{\pi}{2\pi})| =0.\)
Tại những điểm cách O một đoạn x thì biên độ giảm \(2.5\sqrt{x}\)lần
=> biên độ tại điểm M cách O một đoạn 25cm là \(\frac{2}{2,5.\sqrt{25}} = 0.16cm. \)
M trễ pha hơn O:
\(u_M=0.16\cos(4\pi t - 2\pi\frac{OM}{\lambda})= 0.16\cos(40\pi t - \frac{5\pi}{3})cm.\)
Đáp án C
+ Điều kiện để có cực đại giao thoa với hai nguồn ngược pha
∆ d = d 2 - d 1 = ( k + 0 , 5 ) λ .
Với khoảng giá trị của ∆ d :
0 - 14 , 5 cm < ∆ d < 10 , 875 - 3 , 625 cm → - 7 , 75 ≤ k ≤ 3 , 125 .
→ Có 11 điểm dao động với biên độ cực đại.
Số điểm cực đại trên đoạn AG là số giá trị k thỏa mãn \(-AG \leq (k+\frac{\triangle \phi}{2\pi})\lambda \leq AG \Rightarrow -\frac{AB}{4}.3=10.875cm \leq (k+0.5)\lambda \leq 10.875\\ \Rightarrow -5.94 \leq k \leq 4.94 \Rightarrow k = -5,-4,\ldots,0,1,\ldots,4\)
có 10 điểm dao động cực đại trên đoạn AG