Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian làm 1 mình xong việc của người thứ nhất là x (giờ), người thứ hai là y (giờ) với x;y>0
Trong 1 giờ người thứ nhất làm được \(\dfrac{1}{x}\) phần công việc và người thứ 2 làm được \(\dfrac{1}{y}\) phần công việc
Trong 1 giờ hai người cùng làm được: \(\dfrac{1}{x}+\dfrac{1}{y}\) phần công việc
Do 2 người làm chung trong 15 giờ thì xong việc nên ta có pt:
\(15\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{15}\) (1)
Hai người cùng làm trong 8 giờ được: \(8\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) phần công việc
Người thứ 2 làm 1 mình trong 21 giờ được: \(\dfrac{21}{y}\) phần công việc
Do 2 người cùng làm trong 8 giờ sau đó người thứ hai làm 1 mình trong 21 giờ thì hoàn thành nên ta có pt:
\(8\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{21}{y}=1\Leftrightarrow\dfrac{8}{x}+\dfrac{29}{y}=1\) (2)
Từ (1) và (2) ta có hệ:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{15}\\\dfrac{8}{x}+\dfrac{29}{y}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{2}{45}\\\dfrac{1}{y}=\dfrac{1}{45}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{45}{2}\\y=45\end{matrix}\right.\)
Vậy người thứ nhất làm 1 mình trong \(\dfrac{45}{2}\) giờ = 22 giờ 30 phút thì xong việc, người thứ 2 làm 1 mình trong 45 giờ thì xong
Gọi thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình lần lượt là x(giờ),y(giờ)
(Điều kiện: x>0 và y>0)
Trong 1 giờ, người thứ nhất làm được \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, người thứ hai làm được \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai người làm được \(\dfrac{1}{16}\left(côngviệc\right)\)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\left(1\right)\)
Trong 15 giờ thì người thứ nhất làm được \(\dfrac{15}{x}\)(công việc)
Trong 6 giờ thì người thứ hai làm được \(\dfrac{6}{y}\)(công việc)
Nếu người thứ nhất làm trong 15 giờ và người thứ hai làm trong 6 giờ thì hai người làm được 75% công việc nên ta có:
\(\dfrac{15}{x}+\dfrac{6}{y}=75\%=\dfrac{3}{4}\)
=>\(\dfrac{5}{x}+\dfrac{2}{y}=\dfrac{1}{4}\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\\\dfrac{5}{x}+\dfrac{2}{y}=\dfrac{1}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{5}{y}=\dfrac{5}{16}\\\dfrac{5}{x}+\dfrac{2}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{y}=\dfrac{5}{16}-\dfrac{1}{4}=\dfrac{1}{16}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=48\\\dfrac{1}{x}=\dfrac{1}{16}-\dfrac{1}{48}=\dfrac{1}{24}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=48\end{matrix}\right.\left(nhận\right)\)
Vậy: Để hoàn thành xong công việc khi làm một mình thì người thứ nhất cần 24 giờ, còn người thứ hai cần 48 giờ
Gọi người 1 , 2 làm trong k , t ngày thì xong công việc ( k,t>0 )
Ta có hệ pt \(\int^{\frac{2}{k}+\frac{5}{t}=\frac{1}{2}}_{\frac{3}{k}+\frac{3}{t}=1-\frac{1}{20}}\)
Gọi thời gian người thứ nhất làm riêng xong công việc là x(giờ)
Gọi thời gian người thứ hai làm riêng xong công việc là y(giờ)
Điều kiện: x; y > 0
Trong 1 giờ người thứ nhất làm được 1/x (công việc)
Trong 1 giờ người thứ hai làm được 1/y (công việc)
Vì hai người làm chung trong 15 giờ được 1/6 công việc nên ta có phương trình:
Vì người thứ nhất làm một mình trong 12 giờ và người thứ hai làm một mình trong 20 giờ được 1/5 công việc nên ta có phương trình:
Từ (1) và (2) ta có hệ phương trình:
Vậy người thứ nhất làm riêng xong công việc trong 360 giờ; người thứ hai làm riêng xong công việc trong 120 giờ.
gọi x là thời gian người thứ 2 làm việc (x;y>8)
y là thời gian người thứ nhất làm việc
theo đề bài ta có hệ phương trình
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{8}\\\frac{8}{x}+\frac{2}{y}=\frac{1}{2}\end{cases}}\)
đặt \(\frac{1}{x}\)là u; \(\frac{1}{y}\)là v ta có
\(\hept{\begin{cases}u+v=\frac{1}{8}\\8u+2v=\frac{1}{2}\end{cases}}\)<=> u=\(\frac{1}{24}\)=> x=24
vậy thời gian người thứ 2 làm 1 mình tring 24h thì xong công việc
Gọi thời gian làm xong việc một mình của người thứ nhất và người thứ hai lần lượt là \(x,y\left(x,y>0\right)\)(đơn vị: h)
Trong 1 giờ, người thứ nhất làm xong \(\frac{1}{x}\)công việc còn người thứ hai làm xong \(\frac{1}{y}\)công việc.
2 người cùng làm trong 12 giờ thì xong công việc nên ta có phương trình \(\frac{12}{x}+\frac{12}{y}=1\)(1)
Trong 8 giờ, 2 người hoàn thành \(\frac{8}{x}+\frac{8}{y}\)công việc, sau đó người thứ 2 làm việc một mình trong 6h40p \(=\frac{20}{3}\)h, tức là hoàn thành thêm \(\frac{20}{3y}\) công việc thì xong công việc nên ta có pt \(\frac{8}{x}+\frac{8}{y}+\frac{20}{3y}=1\)(2)
Từ (1) và (2) ta có hpt \(\hept{\begin{cases}\frac{12}{x}+\frac{12}{y}=1\\\frac{8}{x}+\frac{8}{y}+\frac{20}{3y}=1\end{cases}}\)
Đặt \(\hept{\begin{cases}\frac{1}{x}=a\left(a>0\right)\\\frac{1}{y}=b\left(b>0\right)\end{cases}}\), hpt trên trở thành \(\hept{\begin{cases}12a+12b=1\\8a+8b+\frac{20}{3}b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}24a+24b=2\\24a+24b+20b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}12a+12b=1\\20b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}12a+12.\frac{1}{20}=1\\b=\frac{1}{20}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{1}{30}\\b=\frac{1}{20}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{30}\\\frac{1}{y}=\frac{1}{20}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=30\\y=20\end{cases}}\)(nhận)
Vậy người thứ nhất làm một mình xong công việc mất 30h, người thứ hai làm xong công việc một mình mất 20h
Công suất làm việc mỗi giờ của người thứ nhất, người thứ hai lần lượt là a,b (a,b>0)
Ta lập hpt:
\(\left\{{}\begin{matrix}4a+4b=1\\a+2b=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{6}\\b=\dfrac{1}{12}\end{matrix}\right.\)
Vậy nếu làm một mình người thứ nhất cần 6 giờ để hoàn thành công việc, người thứ hai cần đến 12 giờ để hoàn thành công việc đó.
Gọi thời gian người 1 hoàn thành công viêc làm 1 mình là x ( giờ, x > 0 )
2 là y ( giờ , y > 0 )
Trong 1 giờ người 1 làm được số công việc là ; \(\frac{1}{x}\) ( cv )
2 là: \(\frac{1}{y}\) ( cv )
\(\Rightarrow\) \(\frac{1}{x}+\frac{1}{y}=\frac{1}{15}\) ( 1 )
Trong 8 giờ người 1 làm được số công việc là: \(\frac{8}{x}\)( cv )
29 giờ 2 là: \(\frac{29}{y}\)( cv )
\(\Rightarrow\)\(\frac{8}{x}+\frac{29}{y}=1\)( 2 )
Từ ( 1 ) và ( 2 ) ta có hệ phương trình:
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{15}\\\frac{8}{x}+\frac{29}{y}=1\end{cases}}\)
Đặt \(\frac{1}{x}=a\)
\(\frac{1}{y}=b\)
\(\hept{\begin{cases}a+b=\frac{1}{15}\\8a+29b=1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=\frac{2}{45}\\b=\frac{1}{45}\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=22,5\\y=45\end{cases}}\)( giờ )
Vậy...
Mik không chắc có đúng hay không nha !