K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2021

Câu 1: 

Gọi x là chiều dài mảnh đất (0<x<14; x>y)

Gọi y là chiều rộng mảnh vườn (0<y<14)

Vì chu vi mảnh đất bằng 20m nên ta có PT: x+y=14 (1)

Vì đường chéo mảnh đất bằng 10m nên ta có PT:

x2+y2=100 (2)

Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x+y=14\\x^2+y^2=100\end{matrix}\right.\)(HPT dễ rồi bạn tự giải nha)

\(\left\{{}\begin{matrix}y=8\\y=6\end{matrix}\right.\)(TM)

Vậy ta có 2 tập nghiệm (x;y) là (6;8) và (8;6)

-Độ dài 2 cạnh mảnh đất lần lượt là: 6cm và 8cm

Câu 1: 

Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: a>0; b>0 và \(a\ge b\))

Vì chu vi mảnh đất là 28m nên ta có phương trình:

2(a+b)=28

hay a+b=14(1)

Vì đường chéo hình chữ nhật là 10m nên Áp dụng định lí Pytago, ta được:

\(a^2+b^2=100\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}a+b=14\\a^2+b^2=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(14-b\right)^2+b^2=100\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-28b+196+b^2-100=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\2b^2-28b+96=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-14b+48=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(b-6\right)\left(b-8\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=14-8=6\\b=14-6=8\end{matrix}\right.\\\left[{}\begin{matrix}b=6\\b=8\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=8\\b=6\end{matrix}\right.\)(thỏa ĐK)

Vậy: Độ dài hai cạnh của mảnh đất hình chữ nhật lần lượt là 8m và 6m

Gọi chiều dài, chiều rộng lần lượt là a,b

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2\left(a+b\right)=120\\\left(b+5+\dfrac{3}{4}a\right)=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=60\\\dfrac{3}{4}a+b=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{4}a=5\\a+b=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\\b=40\end{matrix}\right.\)

Diện tích ban đầu la 20x40=800(m2)

29 tháng 1 2022

cho mình hỏi ở phương trình 2 lúc đầu là b + 5 + 3/4a = 55 sau lúc sau lại mất đi số 5 v ạ ? vế bên vẫn ko nhận đc j 

26 tháng 5 2019

dài 30

rộng 20

26 tháng 5 2019
https://i.imgur.com/79c6fqm.jpg
6 tháng 2 2022

Gọi chiều dài và chiều rộng ban đầu của mảnh đất hình chữ nhật lần lượt là \(x,y\left(x\ge y>0\right)\)

Vì chu vi ban đầu của hình chữ nhật là 120m nên ta có phương trình \(2\left(x+y\right)=120\)\(\Leftrightarrow x+y=60\)(1)

Chiều rộng lúc sau là: \(y+5\)(m)

Chiều dài lúc sau là: \(x-25\%x=75\%x=\frac{3}{4}x\)(m)

Chu vi hình chữ nhật lúc sau là: \(2\left(y+5+\frac{3}{4}x\right)=\frac{3}{2}x+2y+10\)

Vì chu vi lúc sau bị giảm đi 10m nên ta có phương trình \(120-\left(\frac{3}{2}x+2y+10\right)=10\)

\(\Leftrightarrow\frac{3}{2}x+2y+10=110\)\(\Leftrightarrow\frac{3}{2}x+2y=100\)\(\Leftrightarrow3x+4y=200\)(2)

Từ (1) và (2) ta có hệ phương trình \(\hept{\begin{cases}x+y=60\\3x+4y=200\end{cases}}\Leftrightarrow\hept{\begin{cases}3x+3y=180\\3x+4y=200\end{cases}}\Leftrightarrow\hept{\begin{cases}y=20\\x=40\end{cases}}\)(nhận)

Vậy diện tích mảnh đất ban đầu là \(20.40=800\left(m^2\right)\)

6 tháng 2 2022

                                                              Bài giải:
Nửa chu vi mảnh đất là:  120:2=60(m)
HV có cạnh dài là:   60:2=30(m)
CR mảnh đất đó là:   30-5=25(m)
CD mảnh đất đó là:    60-25=35(m)
DT mảnh đất ban đầu là:   35x25=875(m2)
Đáp số:875 m2
thick cho mình nha.

6 tháng 2 2019

Bài 1 :

Một mảnh đất hình chữ nhật có chu vi 40m. Nếu tăng chiều rộng thêm 2m và giảm chiều dài đi 2m thì diện tích tăng thêm 4m. Tính chiều dài và chiều rộng của mảnh vườn

chiều dài x, rộng y
2(x+y)=40 => x+y=20 (1)
diện tích S=xy
=> (x-2)(y+2) - xy=4
  <=> 2x-2y= 8 (2)
từ (1) và (2) có hệ pt, giải hệ =>  x=12, y =8

Bài 1

chiều dài x, rộng y
2(x+y)=40 => x+y=20 (1)
diện tích S=xy
=> (x-2)(y+2) - xy=4
  <=> 2x-2y= 8 (2)
từ (1) và (2) có hệ pt, giải hệ =>  x=12, y =8

22 tháng 4 2021

undefined

23 tháng 4 2018

Cho mảnh đất hình chữ nhật có diện tích 360m2. Nếu tăng chiều rộng thêm 2m và giảm chiều dài 6m thì diện tích mảnh đất không đổi. Tính các kích thước của mảnh đất lúc đầu

trả lời

gọi chiều dài là a ( a>0)
chiều rộng là b ( b>0)
diện tích ban đầu là
ab =360 (1)
tăng chiều rộng thêm 2m và giảm chiều dài 6m thì diện tích mảnh đất không đổi
=> (a-6)(b+2) =ab
<=> ab + 2a -6b -12 =ab
<=> 2a-6b=12 
<=> a-3b=6 (2)
giải hệ pt gồm 1 và 2
=> a= 36 và b=10
vậy chieu dài là 36 , rộng : 10