Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\left(2x+3\right)^2}=x-5\)
\(\Rightarrow2x+3=x-5\)
\(\Rightarrow2x-x=-5-3\)
\(\Rightarrow x=-8\)
\(\sqrt{\left(2x+3\right)^2}=x-5\)
\(\Leftrightarrow2x+3=x-5\)
\(\Leftrightarrow2x-x=-5-3\)
\(\Leftrightarrow x=-8\)
Câu 1a : tự kết luận nhé
\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)
Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)
c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)
\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0
1) 2(x + 3) = 5x - 4
<=> 2x + 6 = 5x - 4
<=> 3x = 10
<=> x = 10/3
Vậy x = 10/3 là nghiệm phương trình
b) ĐKXĐ : \(x\ne\pm3\)
\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)
=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)
=> x + 3 - 2(x - 3) = 5 - 2x
<=> -x + 9 = 5 - 2x
<=> x = -4 (tm)
Vậy x = -4 là nghiệm phương trình
c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)
<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)
<=> 3(x + 1) \(\ge\)2(2x - 2)
<=> 3x + 3 \(\ge\)4x - 4
<=> 7 \(\ge\)x
<=> x \(\le7\)
Vậy x \(\le\)7 là nghiệm của bất phương trình
Biểu diễn
-----------------------|-----------]|-/-/-/-/-/-/>
0 7
Giải :
\(\text{Đ/k : }x+7\ge0\Leftrightarrow x\ge-7\)
\(\sqrt{x^2-6x+9}=x+7\Leftrightarrow\left|x-3\right|=x+7\Leftrightarrow\orbr{\begin{cases}x-3=x+5\\x-3=-\left(x-5\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\in\varnothing\\x=-1\end{cases}}\)
Thế x tìm được vào đ/k ta thấy chỉ có \(x=-1\) thỏa mãn.
Vậy \(S=\left\{-1\right\}\).
\(\sqrt{x^2-6x+9}=x+7\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=x+7\)
\(\Rightarrow|x-3|=x+7\)
TH1 : \(x-3=x+7\Rightarrow0=10\)( vô lý )
\(\Rightarrow x\in\varnothing\)
TH2 : \(x-3=-\left(x+7\right)\Rightarrow x-3=-x-7\)
\(\Rightarrow2x=-4\Leftrightarrow x=-2\)
Vậy \(x=-2\)
2.( x - 2 ) + 1 = x - 1
\(\Leftrightarrow\) 2x - 4 + 1 - x + 1 = 0
\(\Leftrightarrow\)x - 2 = 0
\(\Leftrightarrow\)x = 2
Vậy phương trình có nghiệm là: x = 2
\(2\left(x-2\right)+1=x-1\)
\(\Leftrightarrow2x-4+1-x+1=0\)
\(\Leftrightarrow x-2=0\)
vậy x = 2
\(\Rightarrow x=2\)
Giải :
\(\frac{x+\frac{2\left(3-x\right)}{5}}{12}=1+\frac{1-\frac{9-2x}{12}}{5}\)
\(\Leftrightarrow\frac{\frac{5x+6-2x}{5}}{12}=1+\frac{\frac{12-9+2x}{12}}{5}\)
\(\Leftrightarrow\frac{3x+6}{5\cdot12}=1+\frac{3+2x}{5\cdot12}\)
\(\Leftrightarrow\frac{3x+6}{60}=\frac{60+3+2x}{60}\)
\(\Leftrightarrow3x+6=63+2x\)
\(\Leftrightarrow3x-2x=63-6\)
\(\Leftrightarrow x=57\)
Vậy phương trình có tập nghiệm \(S=\left\{57\right\}\).
a) 2x - 6 = 0
2x = 6
x = 3
Vậy tâp nghiệm S = { 3 }
b) ( x + 2 ) ( 2x + 1 ) =0
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}\)
Vậy tập nghiệm S = { -2 ; -1/2 }
c) ( x + 2 ) ( 2x + 1 ) - ( 2x - 3 ) ( 2x + 1) = 0
( x + 2 - 2x + 3 ) ( 2x + 1 ) = 0
( -x + 5 ) ( 2x + 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}-x+5=0\\2x+1=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-\frac{1}{2}\end{cases}}\)
Vậy tập nghiệm S = { 5 ; -1/2 }
d) \(\frac{x+3}{x-5}-\frac{4}{x}=\frac{20}{x\left(x-5\right)}\)
\(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x-5\right)}-\frac{4\left(x-5\right)}{x\left(x-5\right)}=\frac{20}{x\left(x-5\right)}\)với \(x\ne0;x\ne5\)
\(\Rightarrow x^2+3x-4x+20=20\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(KTMĐK\right)\\x=1\left(TMĐK\right)\end{cases}}\)
Vậy tập nghiệm S ={ 1 }
a) 2x - 6 = 0
<=> 2x = 6
<=> x = \(\frac{6}{2}\)= 3
b) (x+2).(2x+1) = 0
<=> x+2 = 0 => x = -2
2x+1 = 0 => x = \(\frac{-1}{2}\)
c)(x+2)(2x+1)-(2x-3)(2x+1)=0
<=>(2x+1)(5-x)=0
<=> 2x+1 = 0 => x = \(\frac{-1}{2}\)
5-x = 0 => x = 5
d) Đkxđ: x \(\ne\)5 ; 0
Qui đồng và khử mẫu ta được:
x\(^2\)+ 3x - 4x + 20 = 20
<=> x\(^2\)+ x = 0
<=> x (x+1) = 0
<=> x = 0 (loại)
x+1 = 0 => x= -1 (thỏa)
a) \(\frac{x+\frac{x+1}{5}}{3}=1-\frac{2x-\frac{1-2x}{34}}{5}\)
\(\Leftrightarrow\frac{\frac{5x+x+1}{5}}{3}=1-\frac{\frac{68x-1+2x}{34}}{5}\)
\(\Leftrightarrow\frac{6x+1}{15}=1-\frac{70-1}{170}\)
\(\Leftrightarrow\frac{6x+1}{15}+\frac{70x-1}{170}-1=0\)
\(\Leftrightarrow\frac{34\left(6x+1\right)+3\left(70x-1\right)-510}{510}=0\)
\(\Leftrightarrow204x+34+210x-3-510=0\)
\(\Leftrightarrow414x-479=0\)
\(\Leftrightarrow x=\frac{479}{414}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{479}{414}\right\}\)
Giải
\(\text{ĐKXĐ : }x\ne5\)
\(\frac{2x-5}{x+5}=3\)
\(\Leftrightarrow\frac{2x-5}{x+5}=\frac{3\left(x+5\right)}{x+5}\)
\(\Leftrightarrow2x-5=3x+15\)
\(\Leftrightarrow2x-3x=5+20\)
\(\Leftrightarrow x=-20\) (thỏa mãn ĐKXĐ).
Vậy \(S=\left\{-20\right\}\).
\(\frac{2x-5}{x+5}=3\)
\(\Leftrightarrow3\left(x+5\right)=2x-5\)
\(\Leftrightarrow3x+15=2x-5\)
\(\Leftrightarrow3x-2x=-5-15\)
\(\Leftrightarrow x=-20\)