Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(sin\left(x-\dfrac{\pi}{3}\right)\in\left[-1;1\right]\)
\(\Rightarrow y=2sin\left(x-\dfrac{\pi}{3}\right)+3\in\left[1;5\right]\)
\(\Rightarrow\left\{{}\begin{matrix}y_{min}=1\\y_{max}=5\end{matrix}\right.\)
\(y=2-2.\left(2sinx.cosx\right)=2-2sin2x\)
Do \(-1\le sin2x\le1\Rightarrow0\le y\le4\)
\(y_{min}=0\) khi \(sin2x=1\Rightarrow x=\dfrac{\pi}{4}+k\pi\)
\(y_{max}=4\) khi \(sin2x=-1\Rightarrow x=-\dfrac{\pi}{4}+k\pi\)
\(y=2\left(1-cos2x\right)-cos2x=2-3cos2x\)
Do \(-1\le cos2x\le1\Rightarrow-1\le y\le5\)
\(y_{min}=-1\) khi \(cos2x=1\Leftrightarrow x=k\pi\)
\(y_{max}=5\) khi \(cos2x=-1\Rightarrow x=\dfrac{\pi}{2}+k\pi\)
ĐKXĐ: \(cos2x\ge0\Rightarrow0\le cos2x\le1\)
\(\Rightarrow3.0+1\le y\le3.\sqrt{1}+1\)
\(\Rightarrow1\le y\le4\)
\(y_{min}=1\) khi \(cos2x=0\Rightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
\(y_{max}=4\) khi \(cos2x=1\Rightarrow x=k\pi\)
8.
\(y=cos^2x+2\left(2cos^2x-1\right)=5cos^2x-2\)
Do \(0\le cos^2x\le1\Rightarrow-2\le y\le3\)
\(y_{min}=-2;y_{max}=3\)
10.
\(y=2-\left(cosx+1\right)^2\le2\)
\(y_{max}=2\)
14.
Hàm tuần hoàn với chu kì \(T=\pi\)
1.
\(\Leftrightarrow cosx=\frac{\sqrt{3}}{2}\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=-\frac{\pi}{6}+n2\pi\end{matrix}\right.\)
Do \(0< x< 2\pi\Rightarrow\left\{{}\begin{matrix}0< \frac{\pi}{6}+k2\pi< 2\pi\\0< -\frac{\pi}{6}+n2\pi< 2\pi\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-\frac{1}{12}< k< \frac{11}{12}\\\frac{1}{12}< n< \frac{13}{12}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k=0\\n=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}\\x=\frac{11\pi}{6}\end{matrix}\right.\) \(\Rightarrow\sum x=\frac{\pi}{6}+\frac{11\pi}{6}=2\pi\)
2.
\(-\frac{\pi}{4}\le x\le\frac{\pi}{3}\Rightarrow-\frac{\sqrt{2}}{2}\le sinx\le\frac{\sqrt{3}}{2}\)
\(\Rightarrow0\le\left|sinx\right|\le\frac{\sqrt{3}}{2}\)
\(y_{max}=\frac{\sqrt{3}}{2}\) khi \(x=\frac{\pi}{3}\)
\(y_{min}=0\) khi \(x=0\)
\(y=4\left(1-sin^2x\right)+2sinx+2=-4sin^2x+2sinx+6\)
Đặt \(sinx=t\in\left[-1;1\right]\Rightarrow y=f\left(t\right)=-4t^2+2t+6\)
\(-\dfrac{b}{2a}=\dfrac{1}{4}\in\left[-1;1\right]\)
\(f\left(-1\right)=0\) ; \(f\left(\dfrac{1}{4}\right)=\dfrac{25}{4}\); \(f\left(1\right)=4\)
\(\Rightarrow y_{max}=\dfrac{25}{4}\) khi \(sinx=\dfrac{1}{4}\)
\(y_{min}=0\) khi \(sinx=-1\)
Ta có: \(y=4cos^2x+2sinx+2=4-4sin^2x+2sinx+2=-4sin^2x+2sinx+6=-\left(4sin^2x-2sinx+\dfrac{1}{16}-\dfrac{1}{16}-6\right)=-\left(2sin^2x-\dfrac{1}{4}\right)^2+\dfrac{97}{16}\)
Ta có: \(-\left(2sin^2x-\dfrac{1}{4}\right)^2\le0\Rightarrow y\le\dfrac{97}{16}\)
Vậy \(y_{max}=\dfrac{97}{16}\)
2.
\(0\le\left|sinx\right|\le1\Rightarrow1\le y\le3\)
Min và max lần lượt là 3 và 1
3.
\(cos\left(x-\frac{\pi}{2}\right)\le1\Rightarrow y\le3.1+1=4\)
8.
\(y=\frac{1}{2}+\frac{1}{2}cos2x+2cos2x=\frac{1}{2}+\frac{5}{2}cos2x\le\frac{1}{2}+\frac{5}{2}.1=3\)
15.
Nó đi qua vô số điểm nên ko có 4 đáp án để chọn thì ko ai có thể trả lời câu này cho bạn cả
18.
\(y=\frac{sinx+2cosx+1}{sinx+cosx+2}\Leftrightarrow y.sinx+y.cosx+2y=sinx+2cosx+1\)
\(\Leftrightarrow\left(y-1\right)sinx+\left(y-2\right)cosx=1-2y\)
\(\left(y-1\right)^2+\left(y-2\right)^2\ge\left(1-2y\right)^2\)
\(\Leftrightarrow2y^2+2y-4\le0\Rightarrow-2\le y\le1\)
\(\Rightarrow y_{max}=1\)
Do \(0\le cos^2x\le1\Rightarrow\dfrac{1}{2}\le y\le2\)
\(y_{min}=\dfrac{1}{2}\) khi \(cosx=0\Rightarrow x=\dfrac{\pi}{2}+k\pi\)
\(y_{max}=2\) khi \(cos^2x=1\Rightarrow sinx=0\Rightarrow x=k\pi\)