Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Xét hàm số y = x 3 + 3 x 2 - 9 x + 1 trên đoạn [-4;4].
Ta có:
y(1) = -4, y(-3) = 28; y(4) = 77; y(-4) = 21
GTNN của hàm số y = x 3 - 9 x + 1 trên đoạn [-4;4] là -4 khi x= 1
Đáp án A.
Hàm số liên tục trên đoạn [-4;4]
y' = 3x2 – 6x – 9, y’ = 0 => x2 – 2x – 3 = 0
Ta có y(-4) = -41; y(4) = 15; y(-1) = 40; y(3) = 8
Vậy M = max[-4;4]y = 40 và m = min[-4;4]y = -41
TXĐ: D = R.
y ' = 3 x 2 - 6 x - 9 ;
y' = 0 ⇔ x = –1 hoặc x = 3.
+ Xét hàm số trên đoạn [-4; 4] :
y(-4) = -41 ;
y(-1) = 40 ;
y(3) = 8
y(4) = 15.
+ Xét hàm số trên [0 ; 5].
y(0) = 35 ;
y(3) = 8 ;
y(5) = 40.
Chọn D.
Hàm số y = x 3 - 3 x 2 - 9 x + 1 xác định và liên tục trên R, nên trên đoạn [0;4] hàm số luôn xác định và liên tục.
Ta có:
Khi đó: f(0) = 1; f(3) = -26; f(4) = -19
So sánh các giá trị trên ta được:
Suy ra: m + 2M = -26 + 2 = -24.
Vậy m + 2M = -24.
Chọn A
Hàm số y = x 3 - 3 x 2 - 9 x - 1 có
Có
Vậy giá trị lớn nhất của hàm số đã cho là T = 4 xảy ra khi x = -1.
Chọn D.
Hàm số y = x 3 - 3 x 2 - 9 x + 5 liên tục trên - 2 ; 2
Đáp án C
Phương pháp:
Phương pháp tìm GTLN, GTNN của hàm số y = f(x) trên [a;b]
+) Bước 1: Tính y’, giải phương trình y' = 0 ⇒ xi ∈ [a;b]
+) Bước 2: Tính các giá trị f(a); f(b); f(xi)
+) Bước 3:
\(y=x^3-3x^2-9x+35\)
\(y'=3x^2-6x-9\)
\(y'=0\Leftrightarrow3x^2-6x-9=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
\(y\left(-4\right)=-41;y\left(-1\right)=40;y\left(3\right)=8;y\left(4\right)=52\)
\(\Rightarrow y_{max}=y\left(4\right)=52;y_{min}=y\left(-4\right)=-41\) trên đoạn \(\left[-4;4\right]\)