Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
b: BH=CH=BC/2=3(cm)
nên AH=4(cm)
1:
Xét ΔBAC có
BM,CN là trung tuyến
BM cắt CN tại G
=>G là trọng tâm
=>BG=2/3BM và CG=2/3CN
BG+CG>BC
=>2/3BM+2/3CN>BC
=>2/3(BM+CN)>BC
=>BM+CN>3/2BC
2:
BF=2BE
=>EF=BE
=>EF=2ED
=>D là trung điểm của EF
Xét ΔFEC có
CD,EK là trung tuyến
CD cắt EK tại G
=>G là trọng tâm
b: G là trọng tâm của ΔFEC
=>GE/GK=1/2 và GC/DC=2
a.
Xét \(\Delta AMB\) và \(\Delta DMC\) ; có :
\(MA=MD\left(gt\right)\\ \widehat{AMB}=\widehat{DMC}\left(đ^2\right)\\ MB=MC\\ \Rightarrow\Delta AMB=\Delta DMC\left(c-g-c\right)\\ \Rightarrow AB=CD;\widehat{MAB}=\widehat{MDC}\\ \widehat{MAB}=\widehat{MDC}\)
=> AB // CD
TT : AC// BD ; AC=BD
b.
Có vấn đề chỗ BF cắt BC tại K ; !!
coi lại đề
Lời giải:
a)
Xét hai tam giác \(BAD\) và \(BED\) có:
\(\left\{\begin{matrix} \angle ABD=\angle EBD=\frac{\angle B}{2}\\ \frac{AB}{BD}=\frac{EB}{BD}\end{matrix}\right.\Rightarrow \triangle ABD\sim \triangle EBD\)
\(\Rightarrow 90^0=\angle BAD=\angle BED\Rightarrow DE\perp BC\)
b) Xét tam giác $BFC$ thấy:
\(\left\{\begin{matrix} CA\perp BF\\ FE\perp BC(\text{do DE vuông góc với BC})\\ CA\cap FE\equiv D\end{matrix}\right.\)
Do đó, $D$ là trực tâm của tam giác $BFC$ \(\Rightarrow BD\perp CF\)
Tam giác $BFC$ có $BD$ vừa là phân giác góc $B$ vừa là đường cao nên $BFC$ cân tại $B$
Do đó, $BD$ cũng đồng thời là đường trung tuyến hạ từ $B$ xuống $FC$, hay \(K=BD\cap CF\) là trung điểm của $CF$
a, áp dụng định lí py-ta-go ta có:
\(AB^2+AC^2=BC^2\)
=>\(BC^2\)=64+36=100(cm)
=>BC=10cm
vậy BC=10cm
b,xét 2t.giác vuông ABE và DBE có:
EB chung
AB=BD(gt)
=>t.giác ABE=t.giác DBE(cạnh huyền-cạnh góc vuông)
c,xét 2 t.giác vuông AEF và t.giác DEC có:
AE=DE(theo câu b)
\(\widehat{AEF}\)=\(\widehat{DEC}\)(vì đối đỉnh)
=>t.giác AEF=t.giác DEC(cạnh góc vuông-góc nhọn)
=>AF=DC mà BA=BD(gt) suy ra BF=BC
d,gọi O là giao điểm của BE và CF
xét t.giác BFO và t.giác BCO có:
BF=BC(theo câu c)
\(\widehat{FBO}\)=\(\widehat{CBO}\)(theo câu b)
BO cạnh chung
=> t.giác BFO=t.giác BCO(c.g.c)
=>CO=OF =>O là trung điểm của CF(1); \(\widehat{COB}\)=\(\widehat{FOB}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{COB}\)=\(\widehat{FOB}\)=90 độ =>BO\(\perp\)CF(2)
Từ (1) và (2) suy ra BE là trung trực của CF
học tốt!
a: Xét ΔBDM vuông tại D và ΔCEM vuông tại E có
MB=MC
góc BMD=góc CME
=>ΔBDM=ΔCEM
=>BD=CE
b: Xét ΔKBC có
KM vừa là đường cao, vừa là trung tuyến
=>ΔKBC cân tại K
c: KB=KC
mà KC<AC
nên KB<AC