Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) cm DB+DG>AB
.....Ta có BG = BD và GD = GA
△AGB => BG + AG > AB
hay BD + DG > AB (đpcm)
b) △BDH=△CGH(2 cạnh góc vuông) (HB = HC và HG=HD=1/2DG=1/2AG)
=> BD = CG
mà GC = 2/3 CF(t/c đường trung tuyến)
=> BD = 2/3CF
Cách 1: c/m BD > BF ta dựa vào số đo
*Cách 2: T/c liên hệ góc cạnh đối diện trong tam giác
a)xét tam giác AHB và tam giác AHC có
AB=AC
AH là cạnh chung
goc B= góc C
=>tam giác AHB = tam giác AHC (c.g.c)
=>BH=CH
b) theo cau a =>BH=CH=1/2BC=3cm
Áp dụng định lí py-ta-go vào tam giác ABH co
AH2 =AB2-BH2=52-32=25-9=16
=>AH=4
ai chơi free fire không ních mình là tuan6789vn các bạn kết bạn với mình nha
a)
theo giả thiết ta có :
\(\Delta ABC\) cân tại A
theo định lý : trong 1 tam giác cân đường cao đồng thời là đường trung tuyến .
\(\Rightarrow AH\) là đường trung tuyến của tma giác ABC
\(\Rightarrow BH=HC\)
b)
theo a) ta có :
\(BH=HC=\frac{BC}{2}=\frac{6}{2}=3\) ( cm )
xét \(\Delta AHB\perp\) tại H
Ap dụng định lý Py-to-go ta có :
\(AB^2=AH^2+BH^2\)
\(5^2=AH^2+3^2\)
\(\Rightarrow AH^2=5^2-3^2\)
\(=25-9\)
\(=16\)
\(\Rightarrow AH=\sqrt{16}=4\) (cm )
a) Vì trong tam giác cân, đường vuông góc cũng là đường trung tuyến, đường phân giác, đường trung trực nên HB = HC
b) Xét \(\Delta\) vuông AHB có HB = HC = 1/2.BC = 1/2.6 = 3(cm)
\(\Rightarrow\) HB = 3(cm)
Áp dụng định lí Pitago ta có: AB^2 = AH^2 + HB^2
\(\Rightarrow\) AH^2 = AB^2 - HB^2 = 5^2 - 3^2 = 16
\(\Rightarrow\) AH = 4(cm)
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
b: BH=CH=BC/2=3(cm)
nên AH=4(cm)