Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
\(A=36x^2+24x+7\)
\(A=\left(6x\right)^2+2.6x.2+2^2+3\)
\(A=\left(6x+2\right)^2+3\)
Vì \(\left(6x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(6x+2\right)^2+3\ge3\forall x\)
\(\Rightarrow A\ge3\forall x\)
\(\Rightarrow A=3\Leftrightarrow\left(6x+2\right)^2=0\)
\(\Leftrightarrow6x+2=0\)
\(\Leftrightarrow6x=-2\)
\(\Leftrightarrow x=-\frac{1}{3}\)
Vậy \(Amin=3\Leftrightarrow x=-\frac{1}{3}\)
36x2+24x+7
=36x2+24x+4+3
=(36x2+24x+4)+3
=(6x+2)2+3
vì bình phương của 1 số luôn lớn hơn hoặc bằng 0
suy ra (6x+2)2>=0
suy ra (6x+2)2+3>=3
Min của A=3 khi:
6x+2=0
6x= -2
x=-2/6
vậy Mim của A=3 khi x=-2/6
\(A=36x^2+24x+7\)
\(A=\left(6x\right)^2+2.6x.2+2^2-2^2+7\)
\(A=\left(6x+2\right)^2+3\)
\(\left(6x+2\right)^2\ge0\)
\(\Rightarrow A\ge3\)
\(\Rightarrow Min_A=3\)
Để đạt GTNN thì \(\left(6x+2\right)^2=0\)
\(\Leftrightarrow6x+2=0\Leftrightarrow x=\frac{-1}{3}\)
Vậy A đạt GTNN tại x=\(\frac{-1}{3}\)
-1/3