Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-3x+2\right)\sqrt{\dfrac{x+3}{x-1}}=-\dfrac{1}{2}x^3+\dfrac{15}{2}x-11\left(1\right)\)
Đk: \(\sqrt{\dfrac{x+3}{x-1}}\ge0\Leftrightarrow\left[{}\begin{matrix}x>1\\x\le-3\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow-2\left(x-1\right)\left(x-2\right)\sqrt{\dfrac{x+3}{x-1}}=x^3-15x+22\)
\(\Rightarrow-2\sqrt{\left(x-1\right)\left(x+3\right)}.\left(x-2\right)=\left(x-2\right)\left(x^2+2x-11\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\-2\sqrt{\left(x-1\right)\left(x+3\right)}=x^2+2x-11\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow-2\sqrt{x^2+2x-3}=\left(x^2+2x-3\right)-8\)
Đặt \(a=\sqrt{x^2+2x-3}\left(a\ge0\right)\). Từ phương trình (2) suy ra:
\(a^2+2a-8=0\Leftrightarrow\left[{}\begin{matrix}a=2\left(nhận\right)\\a=-4\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+2x-3}=2\Leftrightarrow x^2+2x-7=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1+2\sqrt{2}\left(nhận\right)\\x=-1-2\sqrt{2}\left(nhận\right)\end{matrix}\right.\)
Thử lại ta có \(x=2\) và \(x=-1+2\sqrt{2}\) là 2 nghiệm của phương trình (1).
\(\Leftrightarrow2\left(x^2-3x+2\right)\cdot\sqrt{\dfrac{x+3}{x-1}}=-x^3+15x-22\)
\(\Leftrightarrow2\left(x-2\right)\left(x-1\right)\cdot\dfrac{\sqrt{\left(x+3\right)\left(x-1\right)}}{x-1}=-x^3+2x^2-2x^2+4x+11x-22\)
\(\Leftrightarrow2\left(x-2\right)\sqrt{\left(x+3\right)\left(x-1\right)}=\left(x-2\right)\left(-x^2-2x+11\right)\)
\(\Leftrightarrow\left(x-2\right)\left(\sqrt{4\left(x^2+2x-3\right)}+x^2+2x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\left(1\right)\\2\sqrt{x^2+2x-3}+x^2+2x-11=0\left(2\right)\end{matrix}\right.\)
(1) =>x=2
(2): Đặt \(\sqrt{x^2+2x-3}=a\left(a>=0\right)\)
=>2a+a^2-8=0
=>(a+4)(a-2)=0
=>a=2
=>x^2+2x-3=4
=>x^2+2x-7=0
=>\(x=-1\pm2\sqrt{2}\)
\(ĐK:x>2;x\le-2\\ PT\Leftrightarrow\left(x-2\right)\left(x+2\right)+4\sqrt{\left(x+2\right)\left(x-2\right)}+3=0\\ \Leftrightarrow\left(x^2-4\right)+4\sqrt{x^2-4}+3=0\\ \Leftrightarrow\left(x^2-4\right)+\sqrt{x^2-4}+3\sqrt{x^2-4}+3=0\\ \Leftrightarrow\sqrt{x^2-4}\left(\sqrt{x^2-4}+1\right)+3\left(\sqrt{x^2-4}+1\right)=0\\ \Leftrightarrow\left(\sqrt{x^2-4}+3\right)\left(\sqrt{x^2-4}+1\right)=0\\ \Leftrightarrow x\in\varnothing\left(\sqrt{x^2-4}+3>0;\sqrt{x^2-4}+1>0\right)\)
Theo mình đoán là phương trình này vô nghiệm. Nhưng mình không chứng minh được điều này :((
x=0 ko là nghiệm
chia cả hai vê cho x<>0, ta được:
\(x-\dfrac{1}{x}+\sqrt[3]{x-\dfrac{1}{x}}=2\)
Đặt \(\sqrt[3]{x-\dfrac{1}{x}}=a\)
=>a^3+a=2
=>a=1
=>x-1/x=1
=>\(x=\dfrac{1\pm\sqrt{5}}{2}\)
Điều kiện xác định: \(x\ne1;3\)
Với điều kiện xác định như trên:
\(\frac{3}{x-3}-\frac{2}{x-1}=\frac{x-1}{2}-\frac{x-3}{3}\)
\(\Leftrightarrow\frac{3\left(x-1\right)-2\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\frac{3\left(x-1\right)-2\left(x-3\right)}{6}\)
\(\Leftrightarrow\frac{x+3}{\left(x-1\right)\left(x-3\right)}=\frac{x+3}{6}\)
\(\Leftrightarrow\left(x+3\right)\left(\frac{1}{\left(x-1\right)\left(x-3\right)}-\frac{1}{6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\\left(x-1\right)\left(x-3\right)=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(tm\right)\\\left(x-4x+3-6=0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\pm\sqrt{7}\left(tm\right)\end{matrix}\right.\)
Vậy phương trình có 3 nghiệm \(x=-3\) hoặc \(x=2\pm\sqrt{7}\)