![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có
\(2xy^2+x+y+1-x^2-2y^2-xy=0\)
<=>\(\left(2xy^2-2y^2\right)+\left(y-xy\right)+\left(x-x^2\right)=-1\)
<=>\(2y^2\left(x-1\right)-y\left(x-1\right)-x\left(x-1\right)=-1\)
<=>\(\left(2y^2-y-x\right)\left(x-1\right)=-1\)
đến đây tự giải tiếp nha lắc
Tick nha
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Đặt \(x-2=a,\)\(2x-4=b,7-3x=c\)
⇒ \(\left\{{}\begin{matrix}a+b+c=1\\a^3+b^3+c^3=1\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}a+b+c=1\\\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)=1\end{matrix}\right.\)
⇒ \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
⇒ \(\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=1\\x=\frac{5}{2}\end{matrix}\right.\)
2) ĐK : \(x^2-x\ge0\)
gt ⇒ \(\left(x^4-2x^3+x\right)^2=2\left(x^2-x\right)\)
⇒ \(x^8-4x^7+4x^6+2x^5-4x^4-x^2+2x=0\)
⇒ \(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x^4-2x^3+x^2+1\right)=0\)
⇒ \(\left[{}\begin{matrix}x=2\\x=1\\x=0\\x=-1\end{matrix}\right.\)(t/m)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow\left(2x^2-x-1\right)^2-3=4x^2-2x-2+4\)
\(\Leftrightarrow\left(2x^2-x-1\right)^2-2\left(2x^2-x-1\right)-7=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-x-1=1+2\sqrt{2}\\2x^2-x-1=1-2\sqrt{2}\end{matrix}\right.\Leftrightarrow x\in\left\{1.82;-1.32\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Bạn thay m = 1 vào và giải bình thường
b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2\left(m+1\right)=2m+2\\P=x_1x_2=\frac{c}{a}=m^2+2m\end{cases}}\)
Ta có: \(x_1^3-x_2^3=8\)
\(\Leftrightarrow S^3-3SP=8\)
\(\Leftrightarrow\left(2m+2\right)^3-3\left(2m+2\right)\left(m^2+2m\right)=8\)
\(\Leftrightarrow\left(2m\right)^3+3.\left(2m\right)^2.2+3.2m.2^2+2^3-3\left(2m^3+4m^2+2m^2+4m\right)=8\)
\(\Leftrightarrow8m^3+24m^2+24m+8-6m^3-12m^2-6m^2-12m=8\)
\(\Leftrightarrow2m^3+6m^2+12m+8-8=0\)
\(\Leftrightarrow2m^3+6m^2+12m=0\)
\(\Leftrightarrow m\left(2m^2+6m+12\right)=0\)
Tới đây dễ rồi nhé. m = 0
Còn cái trong ngoặc giải pt bậc 2 là xong
![](https://rs.olm.vn/images/avt/0.png?1311)
<=> x3 + 3x2 + 3x + 1 = 0
<=> (x+1)3 = 0
<=> x+ 1 = 0
<=> x = -1
PT có nghiệm là x = -1
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{x\left(x-1\right)}+\sqrt{x\left(x+2\right)}=2\sqrt{x^2}\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x-1}+\sqrt{x+2}\right)=2\left|x\right|\)
\(+,x\ne0\Rightarrow\sqrt{x-1}+\sqrt{x+2}=2\sqrt{x}\Leftrightarrow2x+1+2\sqrt{\left(x-1\right)\left(x+2\right)}=4x\Leftrightarrow2\sqrt{x^2+x-2}=2x-1\Leftrightarrow4x^2+4x-8=4x^2-4x+1\Leftrightarrow8x=9\Leftrightarrow x=\frac{9}{8}\left(tm\right)\) \(+,x=0\Rightarrow0=0\left(tm\right)\)
\(Vay:x=0;x=\frac{9}{8}\)
![](https://rs.olm.vn/images/avt/0.png?1311)