
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


tth, Hoàng Tử Hà, Bonking, Quoc Tran Anh Le, Vũ Huy Hoàng,
Akai Haruma, @Nguyễn Việt Lâm
giúp mk vs! ngày mai phải nộp r

b,\(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}-16\sqrt{x+1}=0\) (dk \(x\ge-1\)
\(\Leftrightarrow\sqrt{x+1}\left(4-3+2-16\right)=0\)
\(\Leftrightarrow\sqrt{x+1}.-13=0\)
\(\Leftrightarrow x=-1\)

f) ĐKXĐ: \(x\ge-\frac{3}{2}\)
Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)
Lũy thừa 6 cả 2 vế lên PT tương đương:
\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)
Cái ngoặc to vô nghiệm vì nó tương đương:
\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))
Vậy x = 3.
PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra
@Akai Haruma, @Nguyễn Việt Lâm
giúp em vs ạ! Cần gấp ạ
em cảm ơn nhiều!

a) Điều kiện $x \ge -5$. Đặt $\sqrt{x+5}=a$ thì $x=a^2-5$. Thay vào ta có $$\begin{array}{l} (a^2-5)^2-7(a^2-5)=6a-30 \\ \Leftrightarrow a^4-17a^2-6a+90=0 \Leftrightarrow (a^2+6a+10)(a-3)^2=0 \end{array}$$
Vậy $a=3 \Leftrightarrow \boxed{ x= 4}$.
b/ \(x^2-\sqrt{x+5}=5\) ( \(x\ge-5\))
\(\Rightarrow-\left(x+5\right)-\sqrt{x+5}+x^2+x=0\)
Đặt a = \(\sqrt{x+5}\) (a \(\ge\)0)
=> -a2 - a + x2 + x = 0
Có: \(\Delta=\left(-1\right)-4.\left(-1\right)\left(x^2+x\right)=4x^2+4x+1=\left(2x+1\right)^2\)
\(\Rightarrow a=\frac{1+2x+1}{-2}=-x-1\)
hoặc \(a=\frac{1-2x-1}{-2}=x\)
Với a = -x - 1 => \(\sqrt{x+5}=-x-1\) tự giải
Với a = x => \(\sqrt{x+5}=x\) tự giải
Đối chiếu điều kiện rồi loại nghiệm
Cực khổ mới phải làm cho bà
a)Đặt \(a=\sqrt[4]{16+x};b=\sqrt[4]{1-x}\Leftrightarrow a^4=16+x;b^4=1-x\)
Ta có HPT: \(\int^{a+b=3}_{a^4+b^4=17}\)
Giải HPT thu được: \(a=\sqrt[4]{16+x}=2\text{ hoặc }a=\sqrt[4]{16+x}=1\)
tự giải típ :D
b)Đặt t=\(\sqrt{x+5}\Rightarrow t^2=x+5\Leftrightarrow t^2-x=5\)
Ta có HPT: \(\int^{t^2-x=5}_{x^2-t=5}\)
Rồi giải HPT nữa xong