K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

ý đề ra là tìm min nha mn

9 tháng 1 2018

https://olm.vn/hoi-dap/tim-kiem?q=GPT+:+x4+x3-8x2-9x=9&id=203022

3 tháng 12 2019

@Arakawa Whiter T làm ra đến đây rồi không biết ổn không.

ĐK:...

Đặt \(\sqrt{2x^3+8x^2+6x+1}=t\) (\(t\ge0\))

\(PT\Leftrightarrow x^4+2x^3+8x^2-2x^3-8x^2-6x-1=2\left(x+4\right)\sqrt{2x^3+8x^2+6x+1}\)

\(\Leftrightarrow x^4+2x^3+8x^2-t^2-2xt-8t=0\)

\(\Leftrightarrow\left(x^2-t\right)\left(x^2+2x+t+8\right)=0\)

3 tháng 12 2019

ĐK: \(2x^3+8x^2+6x+1\ge0\) (*)

Đặt \(\sqrt{2x^3+8x^2+6x+1}=t\left(t\ge0\right)\)

\(PT\Leftrightarrow x^4+2x^3+8x^2-t^2=2\left(x+4\right)t\)

\(\Leftrightarrow x^4-t^2+2x^3-2xt+8x^2-8t=0\)

\(\Leftrightarrow\left(x^2-t\right)\left(x^2+2x+8+t\right)=0\)

\(x^2+2x+8+t>0\)

\(\Rightarrow x^2=t\) => Giải nốt phương trình (Đến đây EZ game rồi)

17 tháng 2 2019

mình nghĩ đề vậy mới làm đc :))

\(x-2\sqrt{1-x}-4\sqrt{2x+4}+10=0\)

\(\Leftrightarrow1-x-2\sqrt{1-x}+1+2x+4-4\sqrt{2x+4}+4=0\)

\(\Leftrightarrow\left(\sqrt{1-x}-1\right)^2+\left(\sqrt{2x+4}-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1-x}=1\\\sqrt{2x+4}=2\end{matrix}\right.\Rightarrow x=0\)

6 tháng 10 2019

pt <=>\(\sqrt{6x^2-12x+7}-\left(x^2-2x\right)=0\)

<=>\(\sqrt{6\left(x^2-2x+1\right)+1}-\left(x^2-2x+1\right)+1=0\)

<=> \(\sqrt{6\left(x-1\right)^2+1}-\left(x-1\right)^2=-1\)

Đặt \(\left(x-1\right)^2=a\left(a\ge0\right)\)

\(\sqrt{6a+1}-a=-1\)

<=> \(\sqrt{6a+1}=a-1\)

=> \(6a+1=a^2-2a+1\)

<=> \(a^2-2a-6a+1-1=0\)

<=>\(a^2-8a=0\) <=>a(a-8)=0

=> \(\left[{}\begin{matrix}a=0\\a=8\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x-1\right)^2=8\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\left(ktm\right)\\x=2\sqrt{2}+1\left(tm\right)\\x=1-2\sqrt{2}\left(tm\right)\end{matrix}\right.\)

9 tháng 10 2019

阮芳邵族 bạn có thể thấy trong căn luôn > hoặc = 1 => bt trong căn >0

=>luôn t/m với mọi x.

NV
26 tháng 11 2021

ĐKXĐ:...

a. Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+4x+16}=a>0\\\sqrt{x+70}=b\ge0\end{matrix}\right.\)

\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)

Pt trở thành:

\(3a^2-2b^2+ab=0\)

\(\Leftrightarrow\left(a+b\right)\left(3a-2b\right)=0\)

\(\Leftrightarrow3a=2b\)

\(\Leftrightarrow9\left(2x^2+4x+16\right)=4\left(x+70\right)\)

\(\Leftrightarrow...\)

 

NV
26 tháng 11 2021

b. ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)

Phương trình trở thành:

\(a^2+2+ab=3a+b\)

\(\Leftrightarrow a^2-3a+2+ab-b=0\)

\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+b\left(a-1\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(a+b-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+b=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}+\sqrt{1-x}=2\end{matrix}\right.\)

\(\Leftrightarrow...\)

16 tháng 6 2017

\(x^{11}+3x^{10}+x^9+3x^8+x^7-3x^6-17x^5+3x^4+x^3+3x^2+x+3=0\)

\(\Leftrightarrow\left(x^{11}+2x^{10}+4x^9+6x^8+9x^7+6x^6+4x^5+2x^4+x^3\right)+\left(x^{10}+2x^9+4x^8+6x^7+9x^6+6x^5+4x^4+2x^3+x^2\right)-\left(5x^9+10x^8+20x^7+30x^6+45x^5+30x^4+20x^3+10x^2+5x\right)+\left(3x^8+6x^7+12x^6+18x^5+27x^4+18x^3+12x^2+6x+3\right)=0\)

\(\Leftrightarrow x^3\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)+x^2\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)-5\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)+3\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x^3+x^2-5x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)\left(x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)

Dễ thấy: \(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1>0\forall x\)

Nên \(\left[{}\begin{matrix}\left(x-1\right)^2=0\\x+3=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

16 tháng 6 2017

đex ~ vừa thấy trên face lướt qua luôn