Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}{\left(2007-x\right)^2-\left(2007-x\right)\left(2008-x\right)+\left(x-2008\right)^2}\)
\(=\frac{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}\)
\(=1\)
\(\frac{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}{\left(2007-x\right)^2-\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}=\frac{19}{49}\)
điểu kiện xác định x khác 2007 and x khác 2008
Đặt a=x-2008 ( a khác 0 ,) ta có hệ thức
\(\frac{\left(a+1\right)^2-\left(a+1\right)a+a^2}{\left(a+1\right)^2+\left(a+1\right)a+a^2}=\frac{19}{49}\)
=>\(\frac{a^2+a+1}{3a^2+3a+1}=\frac{19}{49}\)
=>\(49a^2+49a+49=57a^2+57a+19\)
=>\(8a^2+8a-30=0\)
=>\(\left(2a-1\right)^2-4^2=0=>\left(2a-3\right)\left(2a+5\right)=0\)
=>\(\orbr{\begin{cases}a=\frac{3}{2}\\a=-\frac{5}{2}\end{cases}}\)(Thỏa mãn điều kiện)
Tự thay a xong suy ra x nhá
Mệt lắm r
\(\sqrt{2007+2008\sqrt{1-x}}=1+\sqrt{2007-2008\sqrt{1-x}}\left(x\le1\right)\)
\(\Leftrightarrow2007+2008\sqrt{1-x}=1+2007-2008\sqrt{1-x}+2\sqrt{2007-2008\sqrt{1-x}}\)
\(\Leftrightarrow2.2008\sqrt{1-x}=2\sqrt{2007-2008\sqrt{1-x}}+1\)
Đặt \(2008\sqrt{1-x}=y\ge0\)
Suy ra phương trình (1) tương đương với : \(2y-1=2\sqrt{2007-y}\Leftrightarrow4y^2-4y+1=4\left(2007-y\right)\Leftrightarrow4y^2=8027\Rightarrow y=\frac{\sqrt{8027}}{2}\)(nhận) hoặc \(y=-\frac{\sqrt{8027}}{2}\)(loại)
Từ đó suy ra \(x=\frac{16120229}{16128256}\)
Vậy \(x=\frac{16120229}{16128256}\)là nghiệm của phương trình.
Bài này nếu mình nhớ không nhầm thì nằm trong đề thi Toán Casio đúng không bạn? :))
\(C=\dfrac{\sqrt{x}-\sqrt{x+1}}{-1}+\dfrac{\sqrt{x+1}-\sqrt{x+2}}{-1}+...+\dfrac{\sqrt{x+2007}-\sqrt{x+2008}}{-1}\)
\(=-\sqrt{x}+\sqrt{x+1}-\sqrt{x+1}+\sqrt{x+2}-...-\sqrt{x+2007}+\sqrt{x+2008}\)\(=-\sqrt{x}+\sqrt{x+2008}\)
\(C=-\sqrt{\sqrt[2007]{2008}}+\sqrt{\sqrt[2007]{2008}+2008}\)
\(\dfrac{x+2}{2008}+\dfrac{x+3}{2007}+\dfrac{x+4}{2006}+\dfrac{x+2028}{6}=0\)
\(\Leftrightarrow\left(\dfrac{x+2}{2008}+1\right)+\left(\dfrac{x+3}{2007}+1\right)+\left(\dfrac{x+4}{2006}+1\right)+\left(\dfrac{x+2028}{6}-3\right)=1+1+1-3\)
\(\Leftrightarrow\dfrac{x+2010}{2008}+\dfrac{x+2010}{2007}+\dfrac{x+2010}{2006}+\dfrac{x+2010}{6}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}+1\right)=0\)
Mà \(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}+\dfrac{1}{6}\ne0\)
\(\Leftrightarrow x+2010=0\)
\(\Leftrightarrow x=-2010\)
Vậy ..
(2-x)/2007-1=(1-x)/2008 -x/2009
<=>((2-x)/2007 +1)-2=(2009-x)/2008 - (2009-x)/2009
<=>(2009-x)/2007 -2=(2009-x)/2008 - (2009-x)/2009
<=>(2009-x)(1/2007-1/2008+1/2009)=2
=>x
\(x\left(2008-x^{2007}\right)=2007\)
\(\Leftrightarrow x.x^{2007}-2008x+2007=0\)
\(\Leftrightarrow x^{2008}-2008x+2007=0\)
\(\Leftrightarrow\left(x^{2008}-1\right)-\left(2007x-2007\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^{2007}+x^{2006}+...+1\right)-2007\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^{2007}+x^{2006}+...+x-2006\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^{2007}+x^{2006}+....+x-2006=0\end{cases}}\)
Thay vào thấy 1 là giá trị duy nhất để đẳng thức ở dưới xảy ra <(")
Vậy...
( ͡° ͜ʖ ͡°) cũng không chắc lắm
\(pt\Leftrightarrow x^{2008}+2007=2008x\)
Áp dụng BĐT AM-GM ta có:
\(x^{2008}+2007=x^{2008}+1+...+1\ge2008\left|x\right|\ge VP\)
Suy ra x=1 là nghiệm của pt
Vậy...