Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
- Ta có:
- Vì:
- Suy ra: có giá trị hữu hạn nếu 2 - a = 0 hay a = 2.
Thầy tui cho cái ghi nhớ thế này \(\lim\limits\left(u_n-a\right)=0\Leftrightarrow\lim\limits u_n=a\) . Cơ mà theo tui cứ nên biến đổi từ từ đã :v
\(\lim\limits\left(\dfrac{1-4an+4a^2n^2-8an^2+4an-2a-16n^2+8n-4}{4n^2-2n+1}\right)\)
\(=\lim\limits\dfrac{4a^2n^2-8n^2\left(a+2\right)-2a+8n-3}{4n^2-2n+1}=\lim\limits\dfrac{4a^2-8\left(a+2\right)}{4}=0\Leftrightarrow a^2-2a-4=0\Leftrightarrow\left[{}\begin{matrix}a=1+\sqrt{5}\\a=1-\sqrt{5}\end{matrix}\right.\Rightarrow tong-S=2\)
Phương trình cos 2 x − π 3 − m = 2 ⇔ cos 2 x − π 3 = m + 2.
Phương trình có nghiệm ⇔ − 1 ≤ m + 2 ≤ 1 ⇔ − 3 ≤ m ≤ − 1
→ m ∈ ℤ S = − 3 ; − 2 ; − 1 ⇒ T = − 3 + − 2 + − 1 = − 6.
Chọn đáp án B.
\(lim\left(\frac{3n+2}{n+2}+a^2-4a\right)=lim\left(\frac{3+\frac{2}{n}}{1+\frac{2}{n}}+a^2-4a\right)=a^2-4a+3\)
\(\Rightarrow a^2-4a+3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=3\end{matrix}\right.\)
\(\Rightarrow S=4\)
Để phương trình có nghiệm thì \(\left(\sqrt{2019}\right)^2+\left(-1\right)^2>=4m^2\)
=>4m^2<=2020
=>m^2<=505
mà m nguyên
nên \(m^2\in\left\{0;1;...;22^2\right\}\)
=>\(m\in\left\{-22;-21;...;21;22\right\}\)
=>Tổng các phần tử là 0
=>Chọn D
\(y'=\dfrac{-1}{\left(x-1\right)^2}\)
Gọi phương trình đường thẳng d qua A có dạng: \(y=k\left(x-a\right)+1\)
d tiếp xúc (C) khi và chỉ khi hệ sau có nghiệm:
\(\left\{{}\begin{matrix}\dfrac{-x+2}{x-1}=k\left(x-a\right)+1\\\dfrac{-1}{\left(x-1\right)^2}=k\end{matrix}\right.\)
\(\Rightarrow\dfrac{-x+2}{x-1}=\dfrac{-\left(x-a\right)}{\left(x-1\right)^2}+1\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=x-a-\left(x-1\right)^2\)
\(\Leftrightarrow2x^2-6x+3=-a\) (1)
Để có đúng 1 tiếp tuyến qua A khi (1) có đúng 1 nghiệm
\(\Rightarrow y=-a\) tiếp xúc \(y=2x^2-6x+3\)
\(\Leftrightarrow-a=-\dfrac{3}{2}\Rightarrow a=\dfrac{3}{2}\)
Chọn C.
- Ta có:
- Vì:
- Suy ra: có giá trị hữu hạn nếu 2 - a = 0 hay a = 2.