K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2017


Gọi r là bán kính của đường tròn nội tiếp . Dễ dàng tính được 

                  

               

...

31 tháng 8 2017

nếu rảnh có thể tham khảo tại

Trường Toán Pitago – Hướng dẫn Giải toán - Học toán lớp 3,4,5,6,7,8,9 - Học toán trên mạng - Học toán online

1: ΔABC cân tại A 

=>AB=AC

mà OB=OC

nên AO là trung trực của BC

=>AD là đường kính của (O)

2: Xét (O) có

góc ACD là góc nội tiếp chắn nửa đường tròn

=>góc ACD=90 độ

3: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

=>HB=HC=BC/2=12cm

AH=căn AB^2-AH^2=16cm

ΔACD vuông tại C có CH là đường cao

nên AC^2=AH*AD

=>AD=20^2/16=25cm

=>R=12,5cm

22 tháng 12 2018

A B C H E F I 1

Vì  BE , BH là các tiếp tuyến của (O)

=>  AB là phân giác ^EAH

=> \(\widehat{BAH}=\frac{\widehat{EAH}}{2}\)

Tương tự \(\widehat{CAH}=\frac{\widehat{HÀF}}{2}\)

\(\Rightarrow\widehat{BAH}+\widehat{CAH}=\frac{\widehat{EAH}+\widehat{HAF}}{2}\)

\(\Rightarrow\frac{\widehat{EAH}+\widehat{HÀF}}{2}=90^o\)

\(\Rightarrow\widehat{EAH}+\widehat{HAF}=180^o\)

=> E , A , F thẳng hàng

=> EF là đường kính (A)

=> A là trung điểm EF

VÌ BE , CF là 2 tiếp tuyến của (A)

=> \(BE\perp EF\)và \(CF\perp EF\)

\(\Rightarrow BE\)// \(CF\)

=> BEFC là hình thang đáy BE , CF

Xét hình thang BEFC có A là trung điểm EF     

                                       I là trung điểm BC

=> AI là đường trung bình hình thang BEFC

=> AI // EF
Mà \(EF\perp FC\)(tiếp tuyến) 

=> \(AI\perp AF\)

=> \(\Delta AIF\)vuông tại A

=> \(sinF_1=\frac{AI}{IF}\)

Giờ cần tính AI và IF nữa là xong !

Áp dụng định lí Py-ta-go vào \(\Delta\)ABC vuông tại A

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow3^2+6^2=BC^2\)

\(\Leftrightarrow BC^2=45\)

\(\Leftrightarrow BC=3\sqrt{5}\)(Do BC > 0)

Vì \(\Delta\)ABC vuông tại A có AI là đường trung tuyến

=> \(AI=\frac{BC}{2}=\frac{3\sqrt{5}}{2}\)

Áp dụng hệ thức lượng vào \(\Delta\)ABC vuông tại A đường cao AH

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

           \(=\frac{1}{3^2}+\frac{1}{6^2}\)

           \(=\frac{5}{36}\)

\(\Rightarrow AH^2=\frac{36}{5}\)

\(\Rightarrow AF^2=\frac{36}{5}\)(Do AH = À vì cùng là bán kính (A) )

Áp dụng định lí Py-ta-go vào tam giác  AIF vuông tại A

\(AI^2+AF^2=IF^2\)

\(\Rightarrow\left(\frac{3\sqrt{5}}{2}\right)^2+\frac{36}{5}=IF^2\)

\(\Rightarrow IF^2=\frac{369}{20}\)

\(\Rightarrow IF=\sqrt{\frac{369}{20}}=\frac{3\sqrt{205}}{10}\)

Khi đó \(sinF_1=\frac{AI}{IF}=\frac{3\sqrt{5}}{2}:\frac{3\sqrt{205}}{10}=\frac{5}{\sqrt{41}}\)

Vậy \(sinF_1=\frac{5}{\sqrt{41}}\)

29 tháng 12 2021

a: R=HC/2=6,4:2=3,2(cm)

NV
21 tháng 12 2020

\(\left\{{}\begin{matrix}\widehat{DCA}=\widehat{HCA}\\\widehat{DCA}+\widehat{DAC}=90^0\\\widehat{HCA}+\widehat{HBA}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{HBA}=\widehat{DAC}\)

\(\left\{{}\begin{matrix}\widehat{DAC}+\widehat{BAE}=90^0\\\widehat{HBA}+\widehat{HAB}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{BAE}=\widehat{HAB}\)

Có \(\left\{{}\begin{matrix}AH=AE=R\\\widehat{BAE}=\widehat{HAB}\\\text{AB chung}\end{matrix}\right.\)  \(\Rightarrow\Delta AHB=\Delta AEB\)

\(\Rightarrow\widehat{E}=\widehat{H}=90^0\Rightarrow BE\) là tiếp tuyến

21 tháng 12 2020

Cách chứng minh ^BAE=^HAB khó nghĩ thật ạ.

30 tháng 5 2018

Tìm ba phân số khác nhau biết phân số thứ nhất và phân số thứ hai là 7/8,tổng của phân số thứ hai và phân số thứ ba là 8/7,tổng của phân số thứ nhất và phân số thứ ba là 8/9

a: ΔABC vuông tại A nên O là trung điểm của BC

Xét ΔCAB có CF/CA=CO/CB

nên FO//AB

=>FO vuông góc AC

góc AHO+góc AFO=180 độ

=>AHOF nội tiếp đường tròn đường kính AO

=>I là trung điểm  của AO

b: (O) và (I) đều đi qua A

OI=OA-IA=R-r'

=>(O) tiếp xúc (I) tại A