K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2016

 đặt n = 3k+r (với r = 0, 1, 2) 
2^n = 2^(3k+r) = 8^k.2^r 
8 chia 7 dư 1 nên 8^k chia 7 dư 1 
* nếu r = 0 => 2^n = 8^k chia 7 dư 1 => 2^n + 1 chia 7 dư 2 
* nếu r = 1 => 2^n = 8^k.2 chia 7 dư 2 => 2^n + 1 chia 7 dư 3 
* nếu r = 2 => 2^n = 8^k.4 chia 7 dư 4 => 2^n + 1 chia 7 dư 5 
tóm lại 2^n không chia hết cho 7 với mọi n thuộc N 

tick mình  lên 50 với nhaaaaaaaa

17 tháng 1 2016

2n + 1 = 2+ 1n = (2 + 1)n chia hết cho 3 với mọi n thuộc N

=> (2 + 1)chỉ chia hết cho 3 và không chia hết cho 7

=> điều phải chứng minh

 

23 tháng 11 2014

Đầu bài nói là p và p+4 là các số nguyên tố sao lại chứng minh p là hợp số ???? Sai đề à bạn !
 

18 tháng 9 2021

k đi hứa gòi

18 tháng 9 2021

a=0 nhé bạn

27 tháng 2 2016

Nếu có một số chia hết cho 7 thì số đó nhân lên bao nhiêu cũng chia hết cho 7

Mà m2=m.m; n2=n.n nên m và n cũng chia hết cho 7

Vậy m và n chia hết cho 7

2 tháng 7 2019

1) Ta có : 11a + 22b + 33c

      = 11a + 11.2b + 11.3c

      = 11.(a + 2b + 3c) \(⋮\)11

=> 11a + 22b + 33c \(⋮\)11

2) 2 + 22 + 23 + ... + 2100

= (2 + 22) + (23 + 24) + ... + (299 + 2100)

= (2 + 22) + 22.(2 + 22) + ... + 298.(2 + 22)

= 6 + 22.6 + ... + 298.6

= 6.(1 + 22 + .. + 298)

= 2.3.(1 + 22 + ... + 298\(⋮\)3

=> 2 + 22 + 23 + ... + 2100 \(⋮\)3

3) Ta có:  abcabc = abc000 + abc

 = abc x 1000 + abc 

 = abc x (1000 + 1)

= abc x 1001 

= abc .7. 13.11 (1)

= abc . 7 . 13 . 11 \(⋮\)

=> abcabc \(⋮\)7

=> Từ (1) ta có : abcabc = abc x 7.11.13 \(⋮\)11

     => abcabc \(⋮\)11

=> Từ (1) ta có :  abcabc = abc . 7.11.13 \(⋮\)           13

    => => abcabc \(⋮\)13

2 tháng 7 2019

1

.\(11a+22b+33c=11\left(a+2b+3c\right)⋮11\) 

\(\Rightarrow11a+22b+33c⋮11\left(đpcm\right)\) 

hc tốt