Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đầu bài nói là p và p+4 là các số nguyên tố sao lại chứng minh p là hợp số ???? Sai đề à bạn !
Nếu có một số chia hết cho 7 thì số đó nhân lên bao nhiêu cũng chia hết cho 7
Mà m2=m.m; n2=n.n nên m và n cũng chia hết cho 7
Vậy m và n chia hết cho 7
1) Ta có : 11a + 22b + 33c
= 11a + 11.2b + 11.3c
= 11.(a + 2b + 3c) \(⋮\)11
=> 11a + 22b + 33c \(⋮\)11
2) 2 + 22 + 23 + ... + 2100
= (2 + 22) + (23 + 24) + ... + (299 + 2100)
= (2 + 22) + 22.(2 + 22) + ... + 298.(2 + 22)
= 6 + 22.6 + ... + 298.6
= 6.(1 + 22 + .. + 298)
= 2.3.(1 + 22 + ... + 298) \(⋮\)3
=> 2 + 22 + 23 + ... + 2100 \(⋮\)3
3) Ta có: abcabc = abc000 + abc
= abc x 1000 + abc
= abc x (1000 + 1)
= abc x 1001
= abc .7. 13.11 (1)
= abc . 7 . 13 . 11 \(⋮\)7
=> abcabc \(⋮\)7
=> Từ (1) ta có : abcabc = abc x 7.11.13 \(⋮\)11
=> abcabc \(⋮\)11
=> Từ (1) ta có : abcabc = abc . 7.11.13 \(⋮\) 13
=> => abcabc \(⋮\)13
1
.\(11a+22b+33c=11\left(a+2b+3c\right)⋮11\)
\(\Rightarrow11a+22b+33c⋮11\left(đpcm\right)\)
hc tốt
đặt n = 3k+r (với r = 0, 1, 2)
2^n = 2^(3k+r) = 8^k.2^r
8 chia 7 dư 1 nên 8^k chia 7 dư 1
* nếu r = 0 => 2^n = 8^k chia 7 dư 1 => 2^n + 1 chia 7 dư 2
* nếu r = 1 => 2^n = 8^k.2 chia 7 dư 2 => 2^n + 1 chia 7 dư 3
* nếu r = 2 => 2^n = 8^k.4 chia 7 dư 4 => 2^n + 1 chia 7 dư 5
tóm lại 2^n không chia hết cho 7 với mọi n thuộc N
tick mình lên 50 với nhaaaaaaaa
2n + 1 = 2n + 1n = (2 + 1)n chia hết cho 3 với mọi n thuộc N
=> (2 + 1)n chỉ chia hết cho 3 và không chia hết cho 7
=> điều phải chứng minh