Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=0,2\left(5x-1\right)-\dfrac{1}{2}\left(\dfrac{2}{3}x+4\right)+\dfrac{2}{3}\left(3-x\right)\)
\(=x-0,2-\dfrac{1}{3}x-2+2-\dfrac{2}{3}x\)
\(=\left(-0,2-2+2\right)+\left(x-\dfrac{1}{3}x-\dfrac{2}{3}x\right)\)
\(=-0,2\)
\(b,B=\left(x-2y\right)\left(x^2+2xy+4y^2\right)-\left(x^3-8y^3+10\right)\)
\(=x^3-8y^3-x^3+8y^3-10\)
\(=-10\)
\(c,C=4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)-4x\)
\(=4\left(x^2+2x+1\right)+\left(4x^2-4x+1\right)-8\left(x^2-1\right)-4x\)
\(=4x^2+8x+4+4x^2-4x+1-8x^2+8-4x\)
\(=13\)
a) \(A=0,2\left(5x-1\right)-\dfrac{1}{2}\left(\dfrac{2}{3}x+4\right)+\dfrac{2}{3}\left(3-x\right)\)
\(A=x-\dfrac{1}{5}-\dfrac{1}{3}x-2+2-\dfrac{2}{3}x\)
\(A=\left(x-\dfrac{1}{3}x-\dfrac{2}{3}x\right)-\left(\dfrac{1}{5}+2-2\right)\)
\(A=-\dfrac{1}{5}\)
Vậy: ...
b) \(B=\left(x-2y\right)\left(x^2+2xy+4y^2\right)-\left(x^3-8y^3+10\right)\)
\(B=\left[x^3-\left(2y\right)^3\right]-\left[x^3-\left(2y\right)^3\right]-10\)
\(B=-10\)
Vậy: ...
c) \(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x+1\right)\left(x-1\right)-4x\)
\(=4\left(x^2+2x+4\right)+\left(4x^2-4x+1\right)-8\left(x^2-1\right)-4x\)
\(=4x^2+8x+4+4x^2-4x+1-8x^2+8-4x\)
\(=\left(4x^2+4x^2-8x^2\right)+\left(8x-4x-4x\right)+\left(4+1+8\right)\)
\(=13\)
Vậy:...
1. a
$(3x+5)^2=(3x)^2+2.3x.5+5^2$
$=9x^2+30x+25$
1.b
$(6x^2+\frac{1}{3})^2=(6x^2)^2+2.6x^2.\frac{1}{3}+(\frac{1}{3})^2$
$=36x^4+4x^2+\frac{1}{9}$
1.c
$(5x-4y)^2=(5x)^2-2.5x.4y+(4y)^2$
$=25x^2-40xy+16y^2$
1.d
(2x^2y-3y^3x)^2=(2x^2y)^2-2.2x^2y.3y^3x+(3y^3x)^2$
$=4x^4y^2-12x^3y^4+9x^2y^6$
1.e
$(5x-3)(5x+3)=(5x)^2-3^2=25x^2-9$
1.f
$(6x+5y)(6x-5y)=(6x)^2-(5y)^2=36x^2-25y^2$
1.g
$(-4xy-5)(5-4xy)=(-4xy-5)(-4xy+5)$
$=(-4xy)^2-5^2=16x^2y^2-25$
1.h
$(a^2b+ab^2)(ab^2-a^2b)=(ab^2+a^2b)(ab^2-a^2b)$
$=(ab^2)^2-(a^2b)^2=a^2b^4-a^4b^2$
\(3x^3y-12x^2y^2+6x^2y=3x^2y\left(x-4y+2\right)\)
\(\left(3x-2\right)^2-\left(x+1\right)^2=\left(3x-2-x-1\right)\left(3x-2+x+1\right)=\left(2x-3\right)\left(4x-1\right)\)
\(x^2+9x+14=x^2+2x+7x+14=x\left(x+2\right)+7\left(x+2\right)=\left(x+2\right)\left(x+7\right)\)
\(3x^2-14x+16=3x^2-6x-8x-16=3x\left(x-2\right)-8\left(x-2\right)=\left(3x-8\right)\left(x-2\right)\)
\(x^8+x+1\)
\(=\left(x^8-x^7+x^5-x^4+x^2\right)+\left(x^7-x^6+x^4-x^3+x\right)+x^6-x^5+x^3-x^2+1\)
\(=x^2\left(x^6-x^5+x^3-x^2+1\right)+x\left(x^6-x^5+x^3-x^2+1\right)+x^6-x^5+x^3-x^2+1\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
\(x^3-5x+2\)
\(=x^3+2x^2-x-2x^2-4x+2\)
\(=x\left(x^2+2x-1\right)-2\left(x^2+2x-1\right)\)
\(=\left(x-2\right)\left(x^2+2x-1\right)\)
c: ΔABD đồng dạng với ΔACE
=>BD/CE=AB/AC
=>AB/AC=BM/CN
Xét ΔABM và ΔACN có
AB/AC=BM/CN
góc ABM=góc ACN
=>ΔABM đồng dạng với ΔACN
=>góc BAM=góc CAN
góc BAM+góc MAK=góc BAK
góc CAN+góc NAK=góc CAK
mà góc BAM=góc CAN và góc MAK=góc NAK
nên góc BAK=góc CAK
=>AK là phân giác của góc BAC
=>KB/AB=KC/AC
=>KB*AC=KC*AB
Bài 2:
a: \(2\left(x-4\right)-x+3=0\)
\(\Leftrightarrow2x-8-x+3=0\)
hay x=5
b: \(x^2-25-\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=6\end{matrix}\right.\)
Bài 3:
\(-x^2-6x+2016\)
\(=-\left(x^2+6x-2016\right)\)
\(=-\left(x+3\right)^2+2025\le2025\forall x\)
Dấu '=' xảy ra khi x=-3