Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình chiếu của một đoạn thẳng trên một đường thẳng là khoảng cách giữa 2 đoạn thẳng kẻ từ 2 điểm của đoạn thẳng đó vuông góc với đường thẳng cho trước
còn hình chiếu của một điểm là giao điểm của đường thẳng cho trước với đường thẳng kẻ từ điểm đó vuông góc với đường thẳng cho trước
**** mik nha
Gọi số đo ba góc lần lượt là a,b,c
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a+b+c}{1+2+3}=\dfrac{180}{6}=30^0\)
Do đó: \(a=30^0;b=60^0;d=90^0\)
Qua B vẽ đường thẳng Bz song song với Ax
Bz // Ax suy ra góc BAx = ABz =30 ( hai góc so le trong)
Bz // Cy suy ra góc BCy = CBz =40
suy ra ABC = ABz + CBz = 30+40 =70 độ
`#040911`
a)
Ta có:
\(\left\{{}\begin{matrix}\text{AB = AC (tg ABC cân tại A)}\\\text{BD = CE (gt)}\end{matrix}\right.\)
`\Rightarrow \text {AD = AE}`
Xét `\Delta ADE:`
`AD = AE`
`\Rightarrow Delta ADE` cân tại A
`\Rightarrow`\(\widehat{\text{ADE}}=\widehat{\text{AED}}=\dfrac{180^0-\widehat{\text{A}}}{2}\) `(1)`
`\Delta ABC` cân tại A
`\Rightarrow`\(\widehat{\text{ABC}}=\widehat{\text{ACB}}=\dfrac{180^0-\widehat{\text{A}}}{2}\) `(2)`
Từ `(1)` và `(2)`
`\Rightarrow`\(\widehat{\text{ABC}}=\widehat{\text{ADE}}\)
Mà `2` góc này nằm ở vị trí đồng vị
`\Rightarrow \text {DE // BC (t/c 2 dt' //)}`
b)
Ta có:
\(\widehat{ABC}=\widehat{ACB}\text{ }\left(\Delta ABC\text{ cân tại A}\right)\)
Mà \(\left\{{}\begin{matrix}\widehat{ABC}=\widehat{MBD}\text{ }\left(\text{đối đỉnh}\right)\\\widehat{ACB}=\widehat{NCE}\text{ }\left(\text{đối đỉnh}\right)\end{matrix}\right.\)
`\Rightarrow`\(\widehat{\text{MBD}}=\widehat{\text{NCE}}\)
Xét `\Delta MBD` và `\Delta NCE:`
\(\widehat{\text{BMD}}=\widehat{\text{CNE}}\left(=90^0\right)\)
\(\text{BD = CE (gt)}\)
\(\widehat{\text{MBD}}=\widehat{\text{NCE}}\text{ (CMT)}\)
`\Rightarrow Delta MBD = \Delta NCE (ch - gn)`
`\Rightarrow \text {DM = EN (2 cạnh tương ứng)}`
c)
Vì `\Delta MBD = \Delta NCE (b)`
`\Rightarrow \text {BM = CN (2 cạnh tương ứng)}`
Ta có:
\(\left\{{}\begin{matrix}\widehat{\text{ABM}}+\widehat{\text{ABC}}=180^0\text{ (kề bù)}\\\widehat{\text{ACN}}+\widehat{\text{ACB}}=180^0\text{ (kề bù)}\end{matrix}\right.\)
Mà \(\widehat{\text{ABC}}=\widehat{\text{ACB}}\) `(\Delta ABC` cân tại A`)`
`\Rightarrow`\(\widehat{\text{ABM}}=\widehat{\text{ACN}}\)
Xét `\Delta AMB` và `\Delta ANC:`
\( \text{AB = AC }\left(\Delta\text{ABC cân tại A}\right)\\ \widehat{\text{ABM}}=\widehat{\text{ACN}}\\ \text{BM = CN (CMT)}\)
`\Rightarrow \Delta AMB = \Delta ANC (c-g-c)`
`\Rightarrow \text {AM = AN (2 cạnh tương ứng)}`
Xét `\Delta AMN`
`\text {AM = AN}`
`\Rightarrow \Delta AMN` là `\Delta` cân.
bn ơi mình thấy câu b kẻ thêm nó cứ sao ý
bn có chép đúng đề bài ko
10: Chọn B
Ot là phân giác của \(\widehat{MOP}\)
=>\(\widehat{MOP}=2\cdot\widehat{tOP}\)
\(\widehat{MOP}=\widehat{NOQ}\)
=>\(\widehat{NOQ}=2\cdot\widehat{tOP}\)
mà \(\widehat{tOP}=\widehat{t'OQ}\)(hai góc đối đỉnh)
nên \(\widehat{NOQ}=2\cdot\widehat{t'OQ}\)
=>Ot' là phân giác của góc NOQ
11:
OC là phân giác của góc AOB
=>\(\widehat{AOC}=\widehat{BOC}=\dfrac{50^0}{2}=25^0\)
\(\widehat{DOE}=\widehat{BOC}\left(=25^0\right)\)
=>\(\widehat{DOE}+\widehat{DOB}=180^0\)
=>OB và OE là hai tia đối nhau
=>Hai góc đối đỉnh là \(\widehat{BOC};\widehat{DOE}\)
=>Chọn D
12:
\(\widehat{AOC}+\widehat{AOD}=180^0\)
\(\widehat{AOC}-\widehat{AOD}=50^0\)
Do đó: \(\widehat{AOC}=\dfrac{180^0+50^0}{2}=115^0;\widehat{AOD}=115^0-50^0=65^0\)
=>\(\widehat{BOC}=\widehat{AOD}=65^0\)
=>Chọn B
a. Người điều tra cần biết điểm thi học kì 2 môn toán của một lớp 7.
b. Dấu hiệu là điểm thi học kì 2 môn toán của một lớp 7. Có 30 giá trị của dấu hiệu.
c. Có 7 giá trị khác nhau của dấu hiệu.
d. Các giá trị khác nhau: 4, 5, 6, 7, 8, 9, 10.
Bảng "tần số":
Điểm | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Tần số | 1 | 2 | 3 | 6 | 8 | 8 | 2 | N = 30 |