Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x(x-y)+(x-y)=(x+1)(x-y)
b) 2x+2y -x(x+y)= 2(x+y)-x(x+y)=(2-x)(x+y)
x^2 - x - y^2 - y
= x^2 - y^2 - x - y
= ( x - y ) ( x + y ) - ( x + y )
= ( x + y ) ( x - y - 1 )
x^2 - 2xy + y^2 - z^2
= ( x- y ) ^2 - z^2
= ( x - y - z ) ( x - y + z )
\(2x+3y+5z=\frac{x^2+y^2+z^2}{2}+19\)
\(x^2+y^2+z^2+38=4x+6y+10z\)
\(\left(x^2-4x+4\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)
\(\left(x-2\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
\(x-2=y-3=z-5=0\)
\(x=2,y=3,z=5\)
\(a.=x\)
\(b.=y^3\)
\(c.=3xy\)
\(d.=-\frac{5}{2}a\)
\(e.=3yz\)
\(f.=-3xy\)
\(\left(2x-5\right)\left(x-3\right)+\left(2x-5\right)^2=0\)
\(\Rightarrow\left(2x-5\right)\left(x-3+2x-5\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(3x-8\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-5=0\\3x-8=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{8}{3}\end{cases}}\)
\(\frac{3x-5}{4}+\frac{2x-3}{6}=\frac{x}{3}-1\)
\(\Leftrightarrow\frac{18x-30+8x-12}{24}=\frac{x-3}{3}\)
\(\Leftrightarrow\frac{26x-42}{24}=\frac{x-3}{3}\)
\(\Leftrightarrow78x-126=24x-72\)
Chuyển vế các kiểu
`Answer:`
a. \(x^3+x^2-x+2=4x-1\)
\(\Leftrightarrow x^3+x^2-x-4x+2+1=0\)
\(\Leftrightarrow x^3+x^2-5x+3=0\)
\(\Leftrightarrow x^3-x^2+2x^2-2x-3x+3=0\)
\(\Leftrightarrow x^2.\left(x-1\right)+2x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+3x-x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow[x\left(x+3\right)-\left(x+3\right)]\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2.\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)
b. \(x^4+35x^2-74=0\)
\(\Leftrightarrow x^4+37x^2-2x^2-74=0\)
\(\Leftrightarrow x^2.\left(x^2+37\right)-2\left(x^2+37\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2+37\right)=0\)
Mà \(x^2+37\ne0\forall x\)
\(\Rightarrow x^2-2=0\)
\(\Leftrightarrow x^2=2\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
c. \(2x^4+2x^3-76x^2+4x+8=0\)
\(\Leftrightarrow2\left(x^4+x^3-38x^2+2x+4\right)=0\)
\(\Leftrightarrow x^4+x^3-38x^2+2x+4=0\)
\(\Leftrightarrow x^4+7x^3+2x^2-6x^3-42x^2-12x+2x^2+14x+4=0\)
\(\Leftrightarrow x^2.\left(x^2+7x+2\right)-6x\left(x^2+7x+2\right)+2.\left(x^2+7x+2\right)=0\)
\(\Leftrightarrow\left(x^2-6x+2\right)\left(x^2+7x+2\right)=0\)
Trường hợp 1: \(x^2-6x+2\)
Ta có \(\Delta'=\left(-3\right)^2-2=7>0\)
Vậy phương trình có hai nghiệm phân biệt:
\(x_1=3-\sqrt{7}\)
\(x_2=3+\sqrt{7}\)
Trường hợp 2: \(x^2+7x+2=0\)
Ta có \(\Delta=7^2-4.2=41>0\)
Vậy phương trình có hai nghiệm phân biệt:
\(x_1=\frac{-7-\sqrt{41}}{2}\)
\(x_2=\frac{-7+\sqrt{41}}{2}\)
d. \(\left(3x+3\right)^4+\left(3x+5\right)^4=0\)
Mà \(\left(3x+3\right)^4\ge0;\left(3x+5\right)^4\ge0\forall x\inℝ\)
`=>` Để phương trình có nghiệm thì \(\hept{\begin{cases}3x+3=0\\3x+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=-3\\3x=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\x=-\frac{5}{3}\end{cases}}\text{(Vô lý)}\)
Vậy phương trình vô nghiệm.
e. \(\left(2x+1\right)\left(2x+3\right)\left(2x+5\right)\left(2x+7\right)=169\)
\(\Leftrightarrow[\left(2x+1\right)\left(2x+7\right)][\left(2x+3\right)\left(2x+5\right)]-169=0\)
\(\Leftrightarrow\left(4x^2+16x+6+1\right)\left(4x^2+16x+6-1\right)-169=0\)
Đặt \(a=4x^2+16x+6\)
\(\Rightarrow\left(a+1\right)\left(a-1\right)-169=0\)
\(\Leftrightarrow a^2-1^2-169=0\)
\(\Leftrightarrow a^2-170=0\)
\(\Leftrightarrow a=\pm\sqrt{170}\)
\(\Rightarrow4x^2+16+6=\pm\sqrt{170}\)
\(\Leftrightarrow4x^2+16+16-10=\pm\sqrt{170}\)
\(\Leftrightarrow4\left(x+2\right)^2=\pm\sqrt{170}+10\)
\(\Leftrightarrow\left(x+2\right)^2=\left(\pm\sqrt{\frac{\pm\sqrt{170}+10}{4}}\right)^2\)
\(\Leftrightarrow x+2=\pm\sqrt{\frac{\pm\sqrt{170}+10}{4}}\)
\(\Leftrightarrow x=\pm\sqrt{\frac{\pm\sqrt{170}+10}{4}}-2\)