Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: 1,2 đứng đầu
=>Có \(2\cdot2\cdot4=16\left(cách\right)\)
TH2: 1,2 đứng giữa
Nếu số 0 đứng cuối thì có \(2\cdot1\cdot4=8\left(cách\right)\)
Nếu số 8 đứng cuối thì có \(2\cdot1\cdot3=6\left(cách\right)\)
=>Có 14 cách
TH3: 1,2 đứng cuối
=>Có \(1\cdot4\cdot3=12\left(cách\right)\)
=>Có 16+14+12=42 cách
\(\dfrac{\pi}{2}< a< \pi\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\dfrac{4}{5}\)
\(\Rightarrow tana=\dfrac{sina}{cosa}=-\dfrac{3}{4}\)
\(tan\left(a+\dfrac{\pi}{3}\right)=\dfrac{tana+tan\dfrac{\pi}{3}}{1-tana.tan\dfrac{\pi}{3}}=\dfrac{-\dfrac{3}{4}+\sqrt{3}}{1-\left(-\dfrac{3}{4}\right).\sqrt{3}}=\dfrac{48-25\sqrt{3}}{11}\)
Đây là mệnh đề chứa biến, không phải mệnh đề nha bạn
cân 9 lần một bên là một đồng tiền cân lần lượt các đồng tiền xem đồng nào nhẹ
K CHO EM ĐI CHỊ ƠI
mk bận đi ch nên chỉ tạm câu a nha
vẽ 3 đường trung tuyến AD ; BE ; CF
VT =
\(GA+GB+GC\) ( nhớ thêm dấu vec tơ nha )
\(=-\frac{2}{3}AD-\frac{2}{3}BE-\frac{2}{3}CF\)
\(=-\frac{2}{3}\cdot\frac{1}{2}\left(AB+BC\right)-\frac{2}{3}\cdot\frac{1}{2}\left(BA+BC\right)-\frac{2}{3}\cdot\frac{1}{2}\left(CA+CB\right)\) ( quy tắc hình bình hành )
\(=-\frac{1}{3}\left(AB+AC\right)-\frac{1}{3}\left(BA+BC\right)-\frac{1}{3}\left(CA+CB\right)\)
\(=-\frac{1}{3}AB-\frac{1}{3}AC-\frac{1}{3}BA-\frac{1}{3}BC-\frac{1}{3}CA-\frac{1}{3}CB\)
\(=0=VP\)
\(a;\left(\cos a-\sin a\right)\left(cosa+sina\right)=cos^2a-sin^2a=1-sin^2a-sin^2a=1-2sin^2a\)
\(b;VP=\left(2cosa-1\right)\left(2cosa+1\right)=4cos^2a-1=4\left(1-sin^2a\right)-1=3-4sin^2a=VT\)
e;\(\dfrac{1}{1+tana}+\dfrac{1}{1+cota}=1\Leftrightarrow cota+tana+2=\left(cota+1\right)\left(tana+1\right)\Leftrightarrow cota+tana+2=cota.tana+cota+tana+1\Leftrightarrow cota+tana+2=1+cota+tana+1\Leftrightarrow0=0\left(đúng\right)\Rightarrow VT=VP\)
\(d;sin^3a+cos^3a=\left(sina+cosa\right)\left(sin^2a-sina.cosa+cos^2a\right)=\left(sina+cosa\right)\left(1-sina.cosa\right)\left(đpcm\right)\left(hđt:a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\right)\)
\(c;sin^2a.cosa+sina.cos^2a=\left(sina.cosa\right)\left(sin^2+cos^2\right)=sina.cosa\)
\(f;;tana+\dfrac{cosa}{1+sina}=\dfrac{sina}{cosa}+\dfrac{cosa}{1+sina}=\dfrac{sina+sin^2a+cos^2a}{cosa\left(1+sina\right)}=\dfrac{1+sina}{cosa\left(1+sina\right)}=\dfrac{1}{cosa}\)
\(g;1+cot^2a=\dfrac{1}{sin^2a}=\dfrac{1}{1-cos^2a}=\dfrac{1}{\left(1-cosa\right)\left(1+cosa\right)}\left(đpcm\right)\)
\(h;\dfrac{1+cosa}{1-cosa}-\dfrac{1-cosa}{1+cosa}=\dfrac{\left(cosa+1\right)^2-\left(cosa-1\right)^2}{1-cosa^2}=\dfrac{\left(cosa+1-cosa+1\right)\left(cosa+1+cosa-1\right)}{1-cos^2a}=\dfrac{4cosa}{sin^2a}\left(đpcm\right)\)
\(k;\dfrac{1+cosa}{sina}-\dfrac{sina}{1+cosa}=\dfrac{\left(cosa+1\right)^2-sin^2a}{sina\left(1+cosa\right)}=\dfrac{cos^2a+2cosa+1-sin^2a}{sina\left(1+cosa\right)}=\dfrac{2cos^2a+2cosa}{sina\left(1+cosa\right)}=\dfrac{2cosa\left(1+cosa\right)}{sina\left(1+cosa\right)}=\dfrac{2cosa}{sina}=2cota\left(đpcm\right)\)
\(m;;;\Leftrightarrow sin^3a=cosa\left(1+cosa\right)\left(tana-sina\right)=\left(cosa+cos^2a\right)\left(tana-sina\right)\Leftrightarrow sin^3a=\left(cosa+cos^2a\right)\left(\dfrac{sina}{cosa}-sina\right)=sina-sina.cosa+cosa.sina-cos^2a.sina\Leftrightarrow sin^3a=sina-cos^2a.sina\Leftrightarrow sin^3a-sina\left(1-cos^2a\right)=0\Leftrightarrow sin^3a-sina.sin^2a=0\Leftrightarrow0=0\left(đúng\right)\Rightarrowđpcm\)