Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (5x+1)2 - (5x+3)(5x-3)=30
=> 25x2 +50x +1 - (25x2-9)=30
=> 25x2 + 50x +1 - 25x2 + 9 = 30
=> 50x = 30 - 9 -1
=> 50x = 20
=> x= 2/5
#)Giải :
a) \(\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)
\(\Rightarrow25x^2+10x+1-25x^2+9=30\)
\(\Rightarrow\left(25x^2-25x^2\right)+10x+1+9=30\)
\(\Rightarrow10x+10=30\)
\(\Rightarrow x=2\)
b) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)
\(\Rightarrow x^3-27-x\left(x^2-4\right)=15\)
\(\Rightarrow x^3-27x-x^3+4x=15\)
\(\Rightarrow4x-27=15\)
\(\Rightarrow4x=42\)
\(\Rightarrow x=\frac{21}{2}\)
a, \(\frac{3}{35}-\left(\frac{3}{5}+x\right)=\frac{2}{7}\)
\(\frac{3}{5}+x=\frac{3}{35}-\frac{2}{7}=-\frac{1}{5}\)
\(x=-\frac{1}{5}-\frac{3}{5}\)
\(x=-\frac{4}{5}\)
b,\(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
=> \(\left(5x-1\right)=0\) hoặc \(\left(2x-\frac{1}{3}\right)=0\)
=> \(5x=1\) hoặc \(2x=\frac{1}{3}\)
=> \(x=\frac{1}{5}\) hoặc \(x=\frac{1}{6}\)
a) \(\left|x-1\right|+3x=5\)
\(\Leftrightarrow\left|x-1\right|=5-3x\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=5-3x\\x-1=3x-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=2\end{cases}}\)
b) \(\left|5x-3\right|-x=7\)
\(\Leftrightarrow\left|5x-3\right|=7+x\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3=7+x\\5x-3=-x-7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{-2}{3}\end{cases}}\)
a,-12(x-5)+7(3-x)=20
-12x+60+21-7x=20
-19x=-61
x=\(\frac{61}{19}\)
b,30(x+1)-3(x-5)-15x=25
30x+30+15-3x-15x=25
12x=-20
x=\(-\frac{20}{12}\)
Ta có : \(\hept{\begin{cases}\left|5-\frac{2}{3}x\right|\ge0\forall x\\\left|\frac{1}{7}y-3\right|\ge0\forall y\end{cases}}\Leftrightarrow\left|5-\frac{2}{3}x\right|+\left|\frac{1}{7}y-3\right|\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}5-\frac{2}{3}x=0\\\frac{1}{7}y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{15}{2}\\y=21\end{cases}}\)
b) Ta có \(\hept{\begin{cases}\left|5x+10\right|\ge0\forall x\\\left|6y-9\right|\ge0\forall y\end{cases}}\Leftrightarrow\left|5x+10\right|+\left|6y-9\right|\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}5x+10=0\\6y-9=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=1,5\end{cases}}\)
\(A=\frac{99}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{99.100}\right)\)
\(A=\frac{99}{100}-\left(1-\frac{1}{100}\right)\)
\(A=\frac{99}{100}-\frac{99}{100}\)
\(A=\frac{99-99}{100}=0\)
Bài 2
\(\left(3x+5\right).\left(2x-4\right)=0\)
\(TH1:3x+5=0\)
\(3x=-5\)
\(x=-\frac{5}{3}\)
\(TH2:2x-4=0\)
\(2x=4\)
\(x=2\)
\(\left(x^2-1\right).\left(x+3\right)=0\)
\(\Rightarrow x^2-1=0\)
\(x^2=1\)
\(\Rightarrow x=1\)
\(x+3=0\)
\(x=-3\)
\(5x^2-\frac{1}{2}x=0\)
\(\Rightarrow5x^2-\frac{x}{2}=0\)
\(\Rightarrow5x^2=\frac{5x^2}{1}=\frac{5x^2.2}{2}\)
\(10x^2-x=x.\left(10x-1\right)\)
\(\frac{x.\left(10x-1\right)}{2}=0\)
\(\frac{x.\left(10x-1\right)}{2}.2=0.2\)
\(10x-1=0\)
\(x=\frac{1}{10}=0.100\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{10}=0.100\\x=0\end{cases}}\)
\(\frac{x}{4}-\frac{1}{2}=\frac{3}{4}\)
\(\frac{x}{4}=\frac{3}{4}+\frac{1}{2}\)
\(\frac{x}{4}=\frac{5}{4}\)
\(\Rightarrow x=5\)
\(\frac{1}{8}+\frac{7}{8}:x=\frac{3}{4}\)
\(\frac{7}{8}:x=\frac{3}{4}-\frac{1}{8}\)
\(x=\frac{7}{8}:\frac{5}{8}\)
\(x=\frac{56}{40}=\frac{28}{20}=\frac{14}{10}=\frac{7}{5}\)
a: Đề thiếu vế phải rồi bạn
b: \(\Leftrightarrow x\cdot\dfrac{-12}{13}=6+\dfrac{1}{13}+5=11+\dfrac{1}{13}=\dfrac{144}{13}\)
hay x=-12
c: \(\Leftrightarrow x\cdot\dfrac{-5}{4}-\dfrac{6}{5}x=\dfrac{-1}{2}-\dfrac{3}{7}\)
\(\Leftrightarrow x\cdot\dfrac{-49}{20}=\dfrac{-13}{14}\)
hay x=130/343
Lời giải:
Ta luôn có tính chất sau : \(a^2\geq 0, \forall a\in\mathbb{R}\)
Như vậy:
a) \((x-2012)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow (x-2012)^2_{\min}=0\).
Dấu "=" xảy ra khi $x-2012=0\Leftrightarrow x=2012$
b)
\((5x-2)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow (5x-2)^2+100\geq 0+100=100\)
Vậy \([(5x-2)^2+100]_{\min}=100\). Dấu "=" xảy ra khi \(5x-2=0\leftrightarrow x=\frac{2}{5}\)
c)
\((2x+1)^4=[(2x+1)^2]^2\geq 0, \forall x\in\mathbb{R}\Rightarrow (2x+1)^4-99\geq 0-99=-99\)
Vậy \([(2x+1)^4-99]_{\min}=-99\). Dấu "=" xảy ra khi $2x+1=0\leftrightarrow x=\frac{-1}{2}$
d)
\((x^2-36)^6=[(x^2-36)^3]^2\geq 0, \forall x\in\mathbb{R}\)
\(|y-5|\geq 0\) (theo tính chất trị tuyệt đối)
\(\Rightarrow (x^2-36)^6+|y-5|+2013\geq 0+0+2013=2013\)
Vậy GTNN của biểu thức đã cho là $2013$. Dấu "=" xảy ra khi \(\left\{\begin{matrix} x^2-36=0\\ y-5=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\pm 6\\ y=5\end{matrix}\right.\)
Thay x= -1
P(-1)=5(-1)^100+5(-1)^99+...+5(-1)+9
=5+(-5)+5+...+(-5)+9
Từ 1 đén 100 có: (100-1):1+1=100. ta có:50 cặp
P(-1)=[5+(-5)]x50+9=0+9=9
Xin lỗi mình làm tắt :)
Thay x= -1
P(-1)=5(-1)^100+5(-1)^99+...+5(-1)+9
=5+(-5)+5+...+(-5)+9
Từ 1 đén 100 có: (100-1):1+1=100. ta có:50 cặp
P(-1)=[5+(-5)]x50+9=0+9=9