K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2021

có (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0

<=> 3x2-2(a+b+c)x-(ab+bc+ca)=0

vì phương trình có nghiện kép nên denta=0

\(\Delta=4\left(a+b+c\right)^2-12\left(ab+bc+ca\right)\)

\(=4\left(a^2+b^2+c^2-ab-bc-ca\right)\)

do đó \(a^2+b^2+c^2=ab+bc+ca\)

vì a, b, c là độ dài 3 cạnh của tam giác nên

a, b, c là các số dương

nên áp dụng bđt cosi ta có

\(a^2+b^2+c^2\ge ab+bc+ca\)

dấu bằng xảy ra khi a=b=c

vậy tam giác cần tìm là tam giác đều

NV
30 tháng 7 2021

a.

\(\Delta=\left(a^2+b^2-c^2\right)^2-4a^2b^2=\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)\)

\(=\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]\)

\(=\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)\)

Do a;b;c là độ dài 3 cạnh của 1 tam giác nên:

\(\left\{{}\begin{matrix}a< b+c\Rightarrow a-b-c< 0\\a+c>b\Rightarrow a-b+c>0\\a+b>c\Rightarrow a+b-c>0\end{matrix}\right.\)

\(\Rightarrow\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\)

\(\Rightarrow\Delta< 0\)

\(\Rightarrow\) Phương trình vô nghiệm

Đề bài sai

NV
30 tháng 7 2021

b.

\(\Delta=\left(a+b+c\right)^2-4\left(ab+bc+ca\right)\)

\(=a^2+b^2+c^2-2ab-2bc-2ca\)

Do a;b;c là độ dài 3 cạnh của 1 tam giác nên:

\(\left\{{}\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2< ab+ac\\b^2< ab+bc\\c^2< ac+bc\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2< 2ab+2bc+2ca\)

\(\Rightarrow a^2+b^2+c^2-2ab-2bc-2ca< 0\)

\(\Rightarrow\Delta< 0\)

\(\Rightarrow\) Phương trình vô nghiệm

Đề bài sai

21 tháng 4 2016

\(\Delta'=4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)

\(=\left(c^2-\left(a-b\right)^2\right)\left(\left(a+b\right)^2-c^2\right)\)

\(=\left(c+a-b\right)\left(c-a+b\right)\left(a+b+c\right)\left(a+b-c\right)>0\)

=> pt luôn có 2 nghiệm pb  .

18 tháng 6 2017

ko pc

ai ko pc dống tui tk tui nha

18 tháng 6 2017

pc là gì