K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2016

Nhân 3 lần vế pt 1 lên rồi trừ 2 vê cho nhau

15 tháng 5 2016

x=7/9 thì y=7/2; x=0 thì y=0

15 tháng 5 2016

2x+3y=12   => 2x=12-3y    => \(x=\frac{12-3y}{2}\)

Thay x vào pt 1 ta có: y=2 và x=3

15 tháng 5 2016

x=0 hoặc 3;y=4 hoặc 2

hình như là thế

9 tháng 11 2019

Ta có : x - y = 2 => x=2+y (1)

 Mà 5x-3y=10 (2)

Thay (1) vào (2) ta dc : 5(2+y) - 3y =10

                                 => y = 0

                                 => x =0+2=2

9 tháng 11 2019

\(5x-3y=10\)

\(\Leftrightarrow3\left(x-y\right)+2x=10\)

\(\Leftrightarrow6+2x=10\)

\(\Leftrightarrow x=2\)

21 tháng 1 2020

\(a,\hept{\begin{cases}x^2-3y=2\\9y^2-8x=8\end{cases}}\)

\(x^2-3y=2\)

\(y=\frac{1^2-2}{3}\)

\(9-\left(\frac{x^2-2}{3}\right)^2-8x=8\)

\(\Rightarrow x^4-4x^2+4-8x-8=0\)

\(\Rightarrow x^4-4x^2-8x-4=0\)

\(\Rightarrow\left(x^2-2x-2\right)\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=\frac{2+2\sqrt{3}}{3}\\y=\frac{2-2\sqrt{3}}{3}\end{cases}}\)

Vậy ................................

11 tháng 11 2017

Do x^2,y^2,z^2≥0 nên x+1≥0;y+1≥0;z+1≥0⇒x,y,z≥−1

★ Nếu x≥0 thì z^2=x+1≥1⇒z>0⇒y^2=z+1>1⇒y>0

Không mất tính tổng quát giả sử  x≥y≥z>0⇒x^2≥y^2≥z^2>0⇒y≥z≥x⇒x=y=z và x^2=x+1⇒x=y=z=(1+√5)/2

★ Nếu −1≤x≤0 thì y+1=x^2<1⇒y≤0⇒z+1=y2<1⇒z<0

Không mất tính tổng quát giả sử −1≤x≤y≤z≤0⇒x2≥y2≥z2>0⇒y≥z≥x suy ra x=y=z=(1−√5)/2

Vậy hệ có 2 nghiệm x=y=z=(1±√5)/2 

11 tháng 11 2017

Em còn cách khác. Anh xem có đúng ko?

Điều kiện: \(x,y,z\ge-1\)

Xét các trường hợp, dùng phương pháp đánh giá, CM được:

 \(x=y=z\)

Thế vào tìm được nghiệm:

\(x=y=z=\frac{1\pm\sqrt{5}}{x}\)

31 tháng 10 2018

\(\hept{\begin{cases}7\left(2x+y\right)-5\left(3x+y\right)=6\\3\left(x+2y\right)-2\left(x+3y\right)=-6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}14x+7y-15x-5y=6\\3x+6y-2x-6y=-6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-x+2y=6\\x=-6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-6\\y=0\end{cases}}\)

19 tháng 3 2018

\(\left\{{}\begin{matrix}x^2+y^2+xy+1=4y\left(1\right)\\y\left(x+y\right)=2x^2+7y+2\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow xy+y^2=2x^2+7y+2\left(3\right)\)

Thay \(\left(3\right)\) vào \(\left(1\right)\) ta có: \(\left(1\right)\Leftrightarrow x^2+2x^2+7y+2+1-4y=0\\ \Leftrightarrow x^2+y+1=0\\ \Leftrightarrow x^2+1=-y\)

Thay \(\left(4\right)\) vào \(\left(1\right)\): \(y^2+xy-5y=0\Leftrightarrow y\left(y+x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}y=0\\y=5-x\end{matrix}\right.\)

Với y=0 thì \(x^2+1=0\) vô nghiệm

Với y=5-x thì \(x^2+1=x-5\Leftrightarrow x^2-x+6\) vô nghiệm

Vậy hpt vô nghiệm