\(x^2=xy+1,y^2=3\left(y-2x\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2020

b, \(x^3+3x^2y-4y^3+x-y=0\)

\(\Leftrightarrow x^3-x^2y+4x^2y-4xy^2+4xy^2-4y^3+x-y=0\)

\(\Leftrightarrow x^2\left(x-y\right)+4xy\left(x-y\right)+4y^2\left(x-y\right)+\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+4xy+4y^2+1\right)=0\)

\(\Leftrightarrow x-y=0\Leftrightarrow x=y\)

Khi đó pt (2) của hệ trở thành: 

\(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)

\(\Leftrightarrow\left(x^2+5x+5\right)^2-1=24\)

\(\Leftrightarrow\left(x^2+5x+5\right)^2-5^2=0\)

\(\Leftrightarrow\left(x^2+5x\right)\left(x^2+5x+10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy hệ có nghiệm \(\left(x;y\right)\in\left\{\left(0;0\right),\left(-5;-5\right)\right\}\)

31 tháng 10 2018

\(\hept{\begin{cases}7\left(2x+y\right)-5\left(3x+y\right)=6\\3\left(x+2y\right)-2\left(x+3y\right)=-6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}14x+7y-15x-5y=6\\3x+6y-2x-6y=-6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-x+2y=6\\x=-6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-6\\y=0\end{cases}}\)

27 tháng 5 2016

\(\hept{\begin{cases}\frac{x^2+1}{y}+x+y=4\\\left(x+y\right)^2-2\left(\frac{x^2+1}{y}\right)=7\end{cases}}\)(ĐKXD : \(y\ne0\))

Đặt \(\frac{x^2+1}{y}=u\) ; \(x+y=t\)

Hệ phương trình \(\Leftrightarrow\hept{\begin{cases}u+t=4\left(1\right)\\t^2-2u=7\left(2\right)\end{cases}}\)

Từ (1) suy ra : \(u=4-t\)thay vào (2) được phương trình : \(t^2-2\left(4-t\right)=7\Leftrightarrow t^2+2t-15=0\Leftrightarrow\left(t-3\right)\left(t+5\right)=0\)

\(\Rightarrow t=3\)hoặc \(t=-5\)

1. Với t = 3 => u = 1, ta có hệ: 

\(\hept{\begin{cases}\frac{x^2+1}{y}=1\\x+y=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}\)hoặc \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

2. Với t = -5 => u = 9 , ta có hệ : 

\(\hept{\begin{cases}\frac{x^2+1}{y}=9\\x+y=-5\end{cases}}\)\(\Rightarrow x,y\)vô nghiệm.

Vậy : Tập nghiệm của hệ phương trình là : \(\left(x;y\right)=\left(-2;5\right);\left(1;2\right)\)

27 tháng 5 2016

\(\hept{\begin{cases}\frac{x^2+1}{y}+x+y=4\\\left(x+y\right)^2-2\left(\frac{x^2+1}{y}\right)=7\end{cases}}\)(ĐKXD : \(y\ne0\))

21 tháng 1 2020

\(a,\hept{\begin{cases}x^2-3y=2\\9y^2-8x=8\end{cases}}\)

\(x^2-3y=2\)

\(y=\frac{1^2-2}{3}\)

\(9-\left(\frac{x^2-2}{3}\right)^2-8x=8\)

\(\Rightarrow x^4-4x^2+4-8x-8=0\)

\(\Rightarrow x^4-4x^2-8x-4=0\)

\(\Rightarrow\left(x^2-2x-2\right)\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=\frac{2+2\sqrt{3}}{3}\\y=\frac{2-2\sqrt{3}}{3}\end{cases}}\)

Vậy ................................

10 tháng 5 2020

\(\hept{\begin{cases}\left(x+\sqrt{x^2+2012}\right)\left(y+\sqrt{y^2+2012}\right)=2012\left(1\right)\\x^2+z^2-4\left(y+z\right)+8=0\left(2\right)\end{cases}}\)

Ta có:(1) \(\Leftrightarrow\left(x+\sqrt{x^2+2012}\right)\left(y+\sqrt{y^2+2012}\right)\left(\sqrt{y^2+2012}-y\right)\)\(=2012\left(\sqrt{y^2+2012}-y\right)\)(Do \(\sqrt{y^2+2012}-y\ne0\forall y\))

\(\Leftrightarrow2012\left(x+\sqrt{x^2+2012}\right)=2012\left(\sqrt{y^2+2012}-y\right)\)

\(\Leftrightarrow x+\sqrt{x^2+2012}=\sqrt{y^2+2012}-y\)\(\Leftrightarrow x+y=\sqrt{y^2+2012}-\sqrt{x^2+2012}\)

\(\Leftrightarrow x+y=\)\(\frac{\left(\sqrt{y^2+2012}+\sqrt{x^2+2012}\right)\left(\sqrt{y^2+2012}-\sqrt{x^2+2012}\right)}{\sqrt{y^2+2012}+\sqrt{x^2+2012}}\)

\(\Leftrightarrow x+y=\frac{y^2-x^2}{\sqrt{y^2+2012}+\sqrt{x^2+2012}}\)\(\Leftrightarrow\left(x+y\right)\frac{\sqrt{y^2+2012}-y+\sqrt{x^2+2012}+x}{\sqrt{y^2+2012}+\sqrt{x^2+2012}}=0\)

Do \(\hept{\begin{cases}\sqrt{y^2+2012}>\sqrt{y^2}=\left|y\right|\ge y\forall y\\\sqrt{x^2+2012}>\sqrt{x^2}=\left|x\right|\ge-x\forall x\end{cases}}\)\(\Rightarrow\sqrt{y^2+2012}-y+\sqrt{x^2+2012}+x>0\forall x,y\Rightarrow x+y=0\)

\(\Rightarrow y=-x\)

Thay y = -x vào (2), ta được: \(x^2+z^2+4x-4z+8=0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(z-2\right)^2=0\Leftrightarrow\hept{\begin{cases}x=-2\\z=2\end{cases}}\Rightarrow y=-x=2\)

Vậy hệ có nghiệm \(\left(x;y;z\right)=\left(-2;2;2\right)\)