K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

Câu 1: 

a: \(2\sqrt{9}+6\sqrt{4}-3\sqrt{25}\)

\(=2\cdot3+6\cdot2-3\cdot5\)

\(=6+12-15=3\)

b: \(\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=\sqrt{3}-\sqrt{2}-\sqrt{3}-\sqrt{2}\)

\(=-2\sqrt{2}\)

Bài 2: 

a) Ta có: \(\text{Δ}=\left(m+1\right)^2-4\left(m-5\right)\)

\(=m^2+2m+1-4m+20\)

\(=m^2-2m+1+20\)

\(=\left(m-1\right)^2+20>0\forall m\)

Do đó: Phương trình luôn có hai nghiệm phân biệt với mọi m

9 tháng 11 2021

9) We have CE = BC - BE = x - y 

In \(\Delta ABC\), we have \(E\in BC\)\(D\in AB\)and ED//CA, so: \(\frac{AD}{BD}=\frac{CE}{BE}\)(Thales' theorem)

\(\Rightarrow\frac{b}{a}=\frac{x-y}{y}=\frac{x}{y}-1\)\(\Rightarrow b=a\left(\frac{x}{y}-1\right)=\frac{ax}{y}-a\)

So we choose A as the right answer.

13 tháng 7 2018

Bạn viết đề bài ra nhé !

13 tháng 7 2018

Bài 16: Biểu thức sau đây xác định với giá trị nào của x?

a) \(\sqrt{\left(x-1\right)\left(x-3\right)}\)        c) \(\sqrt{\frac{x-2}{x+3}}\)

b) \(\sqrt{x^2-4}\)                         d) \(\sqrt{\frac{2+x}{5-x}}\)

Bài 22: Với n là số tự nhiên, chứng minh đẳng thức:

\(\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)

a: \(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=-1\\8x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-5x=-5\\4x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

b: \(\Leftrightarrow\left\{{}\begin{matrix}4x+8y=-4\\4x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=-5\\x+2y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)

c: \(\Leftrightarrow\left\{{}\begin{matrix}3x-6y=-12\\-3x+6y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0x=-2\left(loại\right)\\-3x+6y=10\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)

d: \(\Leftrightarrow\left\{{}\begin{matrix}2x+y=-2\\2x+y=-2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in R\)

8 tháng 3 2022

\(a,\left\{{}\begin{matrix}3x-2y=-1\\4x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-2\left(4x-2\right)=-1\\y=4x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-8x+4=-1\\y=4x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-5x=-5\\y=4x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=4.1-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

\(b,\left\{{}\begin{matrix}x+2y=-1\\4x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1-2y\\4\left(-1-2y\right)+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1-2y\\-4-8y+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1-2y\\-5y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1-2\left(-1\right)\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,\left\{{}\begin{matrix}x-2y=-4\\-3x+6y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-4\\-3\left(2y-4\right)+6y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-4\\-6y+12+6y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-4\\12=10\left(vô.lí\right)\end{matrix}\right.\)

\(d,\left\{{}\begin{matrix}2x+y=-2\\4x+2y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=-2\\2x+y=-2\left(luôn.đúng\right)\end{matrix}\right.\)