Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) Ta có: \(\text{Δ}=\left(m+1\right)^2-4\left(m-5\right)\)
\(=m^2+2m+1-4m+20\)
\(=m^2-2m+1+20\)
\(=\left(m-1\right)^2+20>0\forall m\)
Do đó: Phương trình luôn có hai nghiệm phân biệt với mọi m
Câu 1:
a: \(2\sqrt{9}+6\sqrt{4}-3\sqrt{25}\)
\(=2\cdot3+6\cdot2-3\cdot5\)
\(=6+12-15=3\)
b: \(\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\sqrt{3}-\sqrt{2}-\sqrt{3}-\sqrt{2}\)
\(=-2\sqrt{2}\)
9) We have CE = BC - BE = x - y
In \(\Delta ABC\), we have \(E\in BC\), \(D\in AB\)and ED//CA, so: \(\frac{AD}{BD}=\frac{CE}{BE}\)(Thales' theorem)
\(\Rightarrow\frac{b}{a}=\frac{x-y}{y}=\frac{x}{y}-1\)\(\Rightarrow b=a\left(\frac{x}{y}-1\right)=\frac{ax}{y}-a\)
So we choose A as the right answer.
Đạt tên cho tam giác vuông tà ABC vuông tại A có đường cao AH
Giải:
Áp dụng định lý Pitago ta có:
\(AB^2+AC^2=BC^2\)
\(hay:5^2+7^2=BC^2\)
\(\Rightarrow BC=\sqrt{5^2+7^2}=\sqrt{74}\left(cm\right)\)
Xét \(\Delta ABC,\widehat{A}=90^o,AH\perp BC\)
Áp dụng hệ thức lượng trong tam giác vuông ta có:
\(AB.AC=AH.BC\)
hay \(5.7=AH.\sqrt{74}\)
\(\Rightarrow AH\approx4,06\left(cm\right)\)
\(\sqrt{1-xy}=\frac{\sqrt{1-xy}.x^2y^2}{x^2y^2}\)\(=\frac{\sqrt{x^4y^4-x^5y^5}}{x^2y^2}\)
có: \(x^5+y^5=2x^2y^2\Rightarrow x^2y^2=\frac{x^5+y^5}{2}\)
\(\frac{\sqrt{x^4y^4-x^5y^5}}{x^2y^2}=\frac{\sqrt{\left(\frac{x^5+y^5}{2}\right)^2-x^5y^5}}{x^2y^2}=\frac{\sqrt{\left(x^5-y^5\right)^2}}{2x^2y^2}=\frac{\left|x^5-y^5\right|}{2x^2y^2}\)
Do x, y hữu tỉ nên \(\frac{\left|x^5-y^5\right|}{2x^2y^2}\)hữu tỉ (đpcm)