K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2021

mong mọi người giúp em với ạ!!!!!!!!!!!!!

cảm ơn mọi người rất nhiều

12 tháng 7 2020

A B C D ( ) O

Bài làm

a) Xét tam giác DAB và tam giác CBA có:

AD = BC ( giả thiết )

\(\widehat{DAB}=\widehat{CBA}\)

AB chung

=> Tam giác DAB = tam giác CBA ( c.g.c )

=> BD = AC ( hai cạnh tương ứng )

b) Vì tam giác DAB = tam giác CBA ( cmt )

=> \(\widehat{ABD}=\widehat{BAC}\)( hai góc tương ứng )

Ta có: \(\widehat{ABD}+\widehat{DBC}=\widehat{ABC}\)

          \(\widehat{BAC}+\widehat{CAD}=\widehat{BAD}\)

Mà \(\widehat{ABD}=\widehat{BAC}\)( cmt )

      \(\widehat{ABC}=\widehat{BAD}\)( giả thiết )

=> \(\widehat{DBC}=\widehat{CAD}\)

Xét tam giác CAD và tam giác DBC có:

BC = AD ( giả thiết )

\(\widehat{DBC}=\widehat{CAD}\)( cmt )

BD = AC ( cmt )

=> Tam giác CAD = tam giác DBC ( c.g.c )

=> \(\widehat{ADC}=\widehat{BCD}\)( hai góc tương ứng )

c) Gọi O là giao điểm của BD và AC

Xét tam giác OAB có: 

\(\widehat{ABD}=\widehat{BAC}\)( cmt )

=> Tam giá OAB cân tại O

=>\(\widehat{ABD}+\widehat{BAC}=180^0-\widehat{AOB}\)

=> \(2\widehat{ABD}=180^0-\widehat{AOB}\)                           (1)

Xét tam giác OCD có:

\(\widehat{BDC}=\widehat{ACD}\)( Do tam giác CAD = tam giác DBC )

=> Tam giác OCD cân tại O

=> \(\widehat{BDC}+\widehat{ACD}=180^0-\widehat{DOC}\)

=> \(2\widehat{BDC}=180^0-\widehat{DOC}\)                      (2)

Ta có: \(\widehat{AOB}=\widehat{DOC}\) ( hai góc đối )                   (3)

Từ (1), (2) và (3) => \(2\widehat{ABD}=2\widehat{BDC}\)   => \(\widehat{ABD}=\widehat{BDC}\)

Mà hai góc này ở vị trí so le trong

=> AB // CD ( đpcm ) 

4 tháng 6 2018

a) Xét tam giác DAB và tam giác CAB có :

AD = BC

\(\widehat{DAB}=\widehat{CBA}\)

Chung AB

\(\Rightarrow\)tam giác DAB = tam giác CAB ( c-g-c )

\(\Rightarrow AC=DB\)( 2 cạnh tương ứng )

b ) Xét tam giác ADC và tam giác BCD có :

AD = BC

AC = BD

chung CD

\(\Rightarrow\)tam giác ADC = tam giác BCD ( c-c-c )

\(\Rightarrow\widehat{ADC}=\widehat{BCD}\)( 2 góc tương ứng )

2 tháng 5 2016

Câu a, Có AD//BC (gt)

=>góc DAC = góc BCA (2 góc so le trong)

Xét tam giác ADC và tam giác CAB có:

góc CDA = góc BAC = 90

độ góc DAC = góc BCA (cmt) =>

tam giác ADC ~ tam giác CAB (g-g)

Câu b, Xét tam giác vuông ABC có:

AB2 + AC2 = BC2 (đ/l Py-ta-go)

Thay AB=6cm AC=8cm

=>BC=10cm

Có tam giác ADC ~ tam giác CAB (câu a)

=>Nhấp chuột và kéo để di chuyển

Thay AB=6cm AC=8cm BC=10cm =>DC=4,8cm

Câu c,

Áp dụng đ/l Py-ta-go vào tam giác vuông ADC, ta tính được AD=6,4cm

Tự chứng minh tam giác AID ~ CIB (g-g)\

=>\(\frac{AD}{BC}=\frac{AI}{CI}\)

=>\(\frac{AD}{BC+AD}=\frac{AI}{CI+AI}\) = \(\frac{AI}{AC}\)

=>AI=\(\frac{128}{41}\)

SBIC = SABC-SABI = \(\frac{1}{2}\)AC.AB -\(\frac{1}{2}\)AI.AB = \(\frac{1}{2}\)AB(AC - AI) = \(\frac{1}{2}\).6(8-\(\frac{128}{41}\)) = \(\frac{600}{41}\) \(\approx\)14,63cm2

2 tháng 5 2016

OK.thế là giống kq rồi

6 tháng 5 2023

\(S=\overline{abc}+\overline{acb}+\overline{bac}+\overline{bca}+\overline{cab}+\overline{cba}\), ta có \(a,b,c\ne0\).

\(S=100a+10b+c+100a+10c+b+...+100c+10b+a\)

\(S=222\left(a+b+c\right)\)

 Ta thấy \(222=2.3.37\) nên muốn \(S\) là số chính phương thì \(a+b+c=2^x.3^y.37^z\) với \(x,y,z\) là các số tự nhiên lẻ. Do đó \(x,y,z\ge1\) hay \(a+b+c\ge222\), vô lí. 

 Vậy không tồn tại số tự nhiên có 3 chữ số \(a,b,c\) thỏa mãn S là số chính phương.

6 tháng 5 2023

mà Lê Song Phương ơi

mình cần bạn giải chi tiết ra đoạn từ dòng số 2 xuống dòng số 3 mình giải được:

2x(aaa+bbb+ccc)

2x111x(a+b+c)

222x(a+b+c)

đk bạn

 

4 tháng 3 2022

A) áp dụng tính chất đường phân giác 

có : \(\dfrac{BD}{DC}\)=\(\dfrac{AB}{AC}\)=6/8=3/4

=>\(\dfrac{BD}{3}\)=\(\dfrac{DC}{4}\)=\(\dfrac{10}{7}\)

=>BD=3.10/7=30/7

=>DC=4.10/7=40/7

4 tháng 3 2022

undefined