Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
\(y=(x-x^{\frac{1}{2}})^{\frac{-1}{2}}\Rightarrow y'=\frac{-1}{2}(x-x^{\frac{1}{2}})'(x-x^{\frac{1}{2}})^{\frac{-3}{2}}\)
\(=-\frac{1}{2}(1-\frac{1}{2}x^{-\frac{1}{2}})(x-x^{\frac{1}{2}})^{\frac{-3}{2}}\)
b. Tương tự a.
\(y'=\frac{-1}{2}(1+\frac{1}{2}x^{\frac{-1}{2}})(x+x^{\frac{1}{2}})^{\frac{-3}{2}}\)
c.
\(y=(x^2+1)^{\frac{-1}{2}}\Rightarrow y'=\frac{-1}{2}(x^2+1)'(x^2+1)^{\frac{-3}{2}}\)
\(=\frac{-1}{2}.2x(x^2+1)^{\frac{-3}{2}}=-x(x^2+1)^{\frac{-3}{2}}\)
d.
\(y=(2x+1)^{\frac{-1}{2}}\Rightarrow y'=\frac{-1}{2}(2x+1)'(2x+1)^{\frac{-3}{2}}=\frac{-1}{2}.2(2x+1)^{\frac{-3}{2}}=-(2x+1)^{\frac{-3}{2}}\)
\(P_{x-1}+P_{x-2}=\left[1.2.3....\left(x-1\right)\right]+\left[1.2.3...\left(x-2\right)\right]\)
\(VT=1.2.3...\left(x-1\right)\left(x-1+1\right)\)
VT = 1 . 2 . 3 . (x - 1) . x
VT = Px
Đây cũng là một ý tưởng hay đó em ah. Chúc các em phát triển nhóm và cùng giúp nhau trong cuộc sống, sẽ chia và giúp đỡ nhau cùng tiến bộ. Thân mến!
Xin lỗi nha, bài lớp mấy vậy bn? Mk chưa học thông cảm nha, ko giúp đc òi, huhuhu...
tại sao lại hỏi hạng tử chính giữa nhỉ, do phép cộng có tính chất giao hoán, nên số nào cũng có thể đứng chính giữa.
\(a,cos\alpha=\dfrac{5}{13}\)
\(sin\alpha=\sqrt{1-cos^2\alpha}=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)
\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\Leftrightarrow1+tan^2\alpha=\dfrac{1}{\left(\dfrac{5}{13}\right)^2}\Leftrightarrow tan^2\alpha=\dfrac{144}{25}\Leftrightarrow tan\alpha=\dfrac{12}{5}\)
\(cot\alpha=\dfrac{1}{tan\alpha}=1:\dfrac{12}{5}=\dfrac{5}{12}\)
\(b,sin\alpha=\dfrac{7}{12}\)
\(cos\alpha=\sqrt{1-sin^2\alpha}=\sqrt{1-\left(\dfrac{7}{12}\right)^2}=\dfrac{\sqrt{95}}{12}\)
\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\Leftrightarrow1+tan^2\alpha=\dfrac{1}{\left(\dfrac{\sqrt{95}}{12}\right)^2}\Leftrightarrow tan\alpha=\dfrac{49}{95}\)
\(cot\alpha=1:\dfrac{49}{95}=\dfrac{95}{49}\)
\(c,tan\alpha=\dfrac{15}{4}\)
\(cot\alpha=1:\dfrac{15}{4}=\dfrac{4}{15}\)
\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\Leftrightarrow1+\left(\dfrac{15}{4}\right)^2=\dfrac{1}{cos^2\alpha}\Leftrightarrow cos\alpha=\sqrt{\dfrac{16}{241}}\)
\(sin\alpha=\sqrt{1-cos^2\alpha}=\sqrt{1-\left(\sqrt{\dfrac{16}{241}}\right)^2}\approx0,97\)
\(d,cot\alpha=-\dfrac{1}{\sqrt{3}}\\ tan\alpha=1:\left(-\dfrac{1}{\sqrt{3}}\right)=-\sqrt{3}\)
\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\Leftrightarrow1+\left(-\sqrt{3}\right)^2=\dfrac{1}{cos^2\alpha}\Leftrightarrow cos\alpha=\dfrac{1}{2}\)
\(sin\alpha=\sqrt{1-\left(\dfrac{1}{2}\right)^2}=\dfrac{\sqrt{3}}{2}\)