Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 51/20
----------------------------------
= 3/14
------------------------------------
= 4/7 - 2/7
= 2/7
--------------------------------------
= 17/45
---------------------------------------
= 2/3
--------------------------------------
= 2 x 1/4
= 1/2
a] 4/12 ; 5/12 ; 11/2 ; 1/4
b] 1 ; 9/12; 12/5 ; 11/3
c] 8/21; 6/11;8/7
d] 2/3 ;2/7 15/2
a]1/3 5/12 11/2 1/4
b]1 3/4 12/5 33/9
c]8/21 6/11 8/7
d]2/3 2/7 15/2
\(\frac{9}{4}+\frac{3}{5}=\frac{57}{20}\)
\(\frac{2}{5}+\frac{4}{7}=\frac{34}{35}\)
\(\frac{3}{5}+\frac{4}{3}=\frac{29}{15}\)
a. \(\dfrac{656565}{272727}=\dfrac{65}{27}\)
b. \(\dfrac{2}{7}\left(\dfrac{3}{4}+\dfrac{9}{4}\right)=\dfrac{6}{7}\)
1/2 + 4/3 = 3/6 + 8/6 = 11/6
4/5 + 3/4 : 2/3 = 4/5 + 3/4 * 3/2 = 4/5 + 9/8 = 32/40 + 45/40 = 77/40
7/2 - 4/3 * 1/6 = 7/2 - 2/9 = 63/18 - 4/18 = 59/18
4/5 * 4/7 : 2/3 = 16/35 : 2/3 = 16/35 * 3/2 = 24/35
1/4 : 5/3 + 1/6 = 1/4 * 3/5 + 1/6 = 3/20 + 1/6 = 9/60 + 10/60 = 19/60
3 - 4/5 : 1/3 = 3 - 4/5 * 3/1 = 3 - 12/5 = 15/5 - 12/5 = 3/5
5/9 * 2/7 - 3/7 = 10/63 - 3/7 = 10/63 - 27/63 = -17/63
\(\frac{2}{3}+\frac{5}{9}-\frac{3}{4}\)
\(=\frac{24}{36}+\frac{20}{36}-\frac{27}{36}\)
\(=\frac{17}{36}\)
\(\frac{2}{7}:\frac{2}{3}-\frac{1}{7}\)
\(=\frac{3}{7}-\frac{1}{7}\)
\(=\frac{2}{7}\)
\(\frac{2}{5}\times\frac{1}{4}:\frac{3}{8}\)
\(=\frac{1}{10}:\frac{3}{8}\)
\(=\frac{8}{30}\)
\(=\frac{4}{15}\)
`a,2/5 + 3/4`
`= 8/20 + 15/20`
`= 23/20`
`b,2/7 + 5/9`
`= 18/63 + 35/63`
`= 53/63`
`c, 4/7 + 3/4 + 2/7`
`= ( 4/7 + 2/7)+3/4`
`= 6/7 + 3/4`
`= 24/28 + 21/28`
`= 45/28`
`@ yl`
\(\dfrac{2}{5}+\dfrac{3}{4}=\dfrac{8}{20}+\dfrac{15}{20}=\dfrac{23}{20}\)
\(\dfrac{2}{7}+\dfrac{5}{9}=\dfrac{18}{63}+\dfrac{35}{63}=\dfrac{53}{63}\)
\(\dfrac{4}{7}+\dfrac{3}{4}+\dfrac{2}{7}= \left(\dfrac{4}{7}+\dfrac{2}{7}\right)+\dfrac{3}{4}=\dfrac{6}{7}+\dfrac{3}{4}=\dfrac{45}{28}\)
$\frac34\times\frac59+\frac34\times\frac79-\frac34\times\frac43$
$=\frac34\times(\frac59+\frac79-\frac43)$
$=\frac34\times(\frac{12}{9}-\frac{12}{9})$
$=\frac34\times0=0$