K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\left|x+3\right|\ge0\forall x\)

\(\Leftrightarrow-\left|x+3\right|\le0\forall x\)

\(\Leftrightarrow-\left|x+3\right|+15\le15\forall x\)

Dấu '=' xảy ra khi |x+3|=0

⇔x+3=0

hay x=-3

Vậy: Giá trị lớn nhất của biểu thức \(A=-\left|x+3\right|+15\) là 15 khi x=-3

b) Ta có: \(\left|x-2\right|\ge0\forall x\)

\(\left|2y+1\right|\ge0\forall y\)

Do đó: \(\left|x-2\right|+\left|2y+1\right|\ge0\forall x,y\)

\(\Leftrightarrow-\left(\left|x-2\right|+\left|2y+1\right|\right)\le0\forall x,y\)

\(\Leftrightarrow-\left|x-2\right|-\left|2y+1\right|\le0\forall x,y\)

\(\Leftrightarrow-\left|x-2\right|-\left|2y+1\right|+1000\le1000\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}x-2=0\\2y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\frac{-1}{2}\end{matrix}\right.\)

Vậy: Giá trị lớn nhất của biểu thức \(B=-\left|x-2\right|-\left|2y+1\right|+1000\) là 1000 khi x=2 và \(y=-\frac{1}{2}\)

a: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7\cdot b^2k^2+3\cdot bk\cdot b}{11\cdot b^2k^2-8\cdot b^2}=\dfrac{b^2k\left(7k+3\right)}{b^2\left(11k^2-8\right)}=\dfrac{k\left(7k+3\right)}{11k^2-8}\)

\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\cdot d^2k^2+3\cdot dk\cdot d}{11\cdot d^2k^2-8d^2}=\dfrac{k\left(7k+3\right)}{11k^2-8}\)

Do đó: \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)

c: \(\dfrac{3a+2c}{3b+2d}=\dfrac{3bk+2dk}{3b+2d}=k\)

\(\dfrac{a}{b}=\dfrac{bk}{b}=k\)

Do đó: \(\dfrac{a}{b}=\dfrac{3a+2c}{3b+2d}\)

11 tháng 2 2020

2x=3y=5z <=>\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{x+y-z}{3+5-2}=\frac{95}{6}\)

Từ đó bạn có thế => x,y,z=

11 tháng 2 2020

2x  = 3y = 5z 

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=5\\\frac{y}{10}=5\\\frac{z}{6}=5\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=15.5=75\\y=5.10=50\\z=6.5=30\end{cases}}\)

Vậy x = 75 ; y = 50 và z = 30

@@ Học tốt@@
## Chiyuki Fujito

5 tháng 8 2017

\(\Rightarrow\orbr{\begin{cases}2x-3=21-x\\2x-3=-21+x\end{cases}\Rightarrow\orbr{\begin{cases}2x-21+x=3\\2x+21-x=3\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}3x-21=3\\x+21=3\end{cases}\Rightarrow\orbr{\begin{cases}x=8\\x=-18\end{cases}}}\)

5 tháng 8 2017

bạn ơi! Tui tra trên mạng hơi dài dòng nên tự hỉu nhé!

Đơn giản hóa 2x + -3 = 21 + -1x  

Sắp xếp lại các điều khoản: -3 + 2x = 21 + -1x

Giải quyết -3 + 2x = 21 + -1x

Giải quyết cho biến 'x'. Di chuyển tất cả các cụm từ có chứa x sang trái, tất cả các điều khoản khác ở bên phải. Thêm 'x' vào mỗi bên của phương trình. -3 + 2x + x = 21 + -1x + x

Kết hợp như các thuật ngữ: 2x + x = 3x -3 + 3x = 21 + -1x + x Kết hợp các thuật ngữ như sau: -1x + x = 0 -3 + 3x = 21 + 0 -3 + 3x = 21

Thêm '3' vào mỗi bên của phương trình. -3 + 3 + 3x = 21 + 3

Kết hợp như các thuật ngữ: -3 + 3 = 0 0 + 3x = 21 + 3 3x = 21 + 3

Kết hợp như các thuật ngữ: 21 + 3 = 24 3x = 24

Chia mỗi bên bằng '3'. X = 8

Đơn giản hóa X = 8

5 tháng 10 2016

925 lớn hơn 440 hoặc 440 nhỏ hơn 925

18 tháng 10 2016

>