\(a\Delta b=\left|a-b\right|\)

What is the value of

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2017

aΔb=|ab|=> 2Δπ=\(\left|2-\pi\right|=\left|-1,141592654\right|=\left|1,141592654\right|\)

vậy 2Δπ=1,141592654

9 tháng 3 2017

\(\pi-2\)

22 tháng 11 2016

câu này ko có nghĩa đâu nha bạn. nhưng mình thử rùi. pi-2 nha

9 tháng 3 2017

aΔb=|a−b|=> 2Δπ=|2−π|=|−1,141592654|=|1,141592654|

vậy 2Δπ=1,141592654

20 tháng 4 2017

Bài giải:

a) (a + b)2 = (a – b)2 + 4ab

- Biến đổi vế trái:

(a + b)2 = a2 +2ab + b2 = a2 – 2ab + b2 + 4ab

= (a – b)2 + 4ab

Vậy (a + b)2 = (a – b)2 + 4ab

- Hoặc biến đổi vế phải:

(a – b)2 + 4ab = a2 – 2ab + b2 + 4ab = a2 + 2ab + b2

= (a + b)2

Vậy (a + b)2 = (a – b)2 + 4ab

b) (a – b)2 = (a + b)2 – 4ab

Biến đổi vế phải:

(a + b)2 – 4ab = a2 +2ab + b2 – 4ab

= a2 – 2ab + b2 = (a – b)2

Vậy (a – b)2 = (a + b)2 – 4ab

Áp dụng: Tính:

a) (a – b)2 = (a + b)2 – 4ab = 72 – 4 . 12 = 49 – 48 = 1

b) (a + b)2 = (a – b)2 + 4ab = 202 + 4 . 3 = 400 + 12 = 412

13 tháng 7 2017

CMR: (a + b)2 = (a - b)2 + 4ab

(a - b)2 = (a + b)2 - 4ab

Ta có: (a + b)2 = a2 + 2ab + b2

= a2 +2ab + b2 - 2ab +2ab

= a2 - 2ab + b2 + 2ab +2ab

= (a - b)2 +4ab

Ta có: (a - b)2 = a2 - 2ab + b2

= a2 - 2ab + b2 + 2ab - 2ab

= a2 + 2ab + b2 - 2ab - 2ab

= (a + b)2 - 4ab

Áp dụng:

a) Tính (a - b)2 , biết a + b = 7 và a.b = 12

Ta có: (a - b)2 = (a + b)2 - 4ab

= 72 - 4.12

= 49 - 48

Vậy (a - b)2 = 1

b) Tính (a + b)2 , biết a - b = 7 và a.b = 3

Ta có: (a + b)2 = (a - b)2 + 4ab

= 72 + 4.3

= 49 + 12

Vậy ( a + b)2 = 61

10 tháng 8 2019

a,Xét \(\Delta\)AHB và AHD có:AH chung

                                   BH=HD(gt)

                                   AHB=AHD=90

vậy tam giác AHB= tam giác AHC

b,Tam giác ABD đều ms đúng chứ ạ bạn xem lại đề nha

Theo câu a ta có tam giác AHB =tam giác AHD nên AB=AD(2 cạnh tương ứng)

Xét tam giác ABD có AB=AD suy ra tam giác ABD cân mà góc ABD =60 độ(cái này bạn tự tính nha)

suy ra tam giác ABD đều

c,Dễ thấy được tam giác ADC cân tại D nên AD=DC

Xét tam giác AHD và tam giác CED có:

        AD=DC

        HDA=EDC(2 góc đối đỉnh)

        AHD=CED=90

nên tam giác AHD=tam giác CED(ch-gn)

suy ra HD=DE mà theo câu a tam giác AHB=AHD nên HD=HB

vậy HB=DE(đpcm)

d, I là giao điểm của CE và AH chứ bạn

Xét tam giác AIC có : AE vuông góc với IC

                                CH vuông góc với IA

                           mà CH cắt AE tại D

nên D là trực tâm của tam giác IAC

hay ID vuống góc với AC

mặt khác DF vuông góc với AC

nên I ,D,F thẳng hàng

Chúc bạn học tốt

a,Xét \(\Delta AHB\)và \(\Delta AHD\)

AH chung

HB=HD

\(\widehat{AHB}=\widehat{AHD}\left(=90^0\right)\)

=> \(\Delta AHB\)=\(\Delta AHD\)

b, xem lại đề

c, Vì \(\widehat{C}=30^0\Rightarrow\widehat{B}=30^0\Rightarrow\widehat{BAD}=60^0\)

\(\Rightarrow\widehat{DAC}=30^0\)

\(\Rightarrow\Delta DAC\)cân tại D

\(\Rightarrow DA=DC\)

Từ đó ta chứng minh được \(\Delta HAD=\Delta ECD\)

\(\Rightarrow HD=DE=BH\)(ĐPCM)

d,Xem lại đề

Chúc học tốt!!!!!! :)

15 tháng 3 2017

\(\left\{{}\begin{matrix}f\left(0\right)⋮5\Rightarrow c⋮5\\f\left(1\right)⋮5\Rightarrow\left(a+b+c\right)⋮5\\f\left(-1\right)⋮5\Rightarrow\left(a-b+c\right)⋮5\\\left[\left(a+b+c\right)+\left(a-b+c\right)\right]=2\left(a+c\right)⋮5\Rightarrow a⋮5\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}c⋮5\\a⋮5\\b⋮5\end{matrix}\right.\)+> dpcm

30 tháng 8 2016

\(a^2\left(b+c\right)=b^2\left(c+a\right)\)

\(\Rightarrow a^2b+a^2c-b^2c-b^2a=0\)

\(\Rightarrow ab.\left(a-b\right)+c.\left(a-b\right).\left(a+b\right)=0\)

\(\Rightarrow\left(ab+ac+bc\right)\left(a-b\right)=0\)

Vậy : \(\left(ab+bc+ca\right)=0\)

\(\Rightarrow\left(ab+bc+ca\right).\left(b-c\right)=0\)

\(\Rightarrow b^2a+b^2c-c^2b-c^2a=0\)

\(\Rightarrow b^2\left(c+a\right)=c^2\left(a+b\right)\)