Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a= 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.11,0.12 ....................................
A=29 1/2 * 2/3 +39 1/3 * 3/4 + 5/6
A=29 1/2 * 39 1/3 * (2/3 + 3/4 + 5/6)
A=29 1/2 * 39 1/3 * (1/2 + 5/6)
A=29 1/2 * 39 1/3 * 4/3
A=29 1/2 * 52
A=1534
Dấu * là dấu nhân nha !!!
Còn bài 2 mình ko biết
Bài 1: Số tự nhiên thỏa mãn: 12
Bài 2: 1m3 25cm3 = 1000025 cm3
Bài 3:
\(1\frac{1}{4}.1\frac{1}{3}=1\frac{1}{3}\) ( S)
3,25 giờ = 3 giờ 25 phút: (S)
Bài 1: x= 12.
Bài 2: 1, 025.
Bài 3: Cả hai câu đều sai nha.
Nhớ k đúng cho mình nha. Thanks.
Bài 1 : \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}\right]:5\times x< \frac{5}{6}\)
=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{1}{24}\right]:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{1}{24}+\frac{2}{15}+\frac{3}{40}\right]:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{5}{12}:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{1}{12}\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{x}{12}< \frac{5}{6}\)
=> \(\frac{8}{12}< \frac{x}{12}< \frac{10}{12}\)
=> x = 9
Bài 2 : \(\frac{\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right]}{x}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)
=> \(\frac{\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}\right]}{x}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{11\cdot12}\)
=> \(\frac{\left[1-\frac{1}{16}\right]}{x}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{11}-\frac{1}{12}\)
=> \(\frac{15}{\frac{16}{x}}=1-\frac{1}{12}\)
=> \(\frac{15}{\frac{16}{x}}=\frac{11}{12}\)
=> \(\frac{15}{16}:x=\frac{11}{12}\)
=> \(x=\frac{45}{44}\)
Bài 3 : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\times(x+1):2}=\frac{399}{400}\)
=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\times(x+1)}=\frac{399}{400}\)
=> \(2\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)
=> \(2\left[\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)
=> \(\left[\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right]=\frac{399}{800}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{399}{800}\)
=> \(\frac{1}{x+1}=\frac{1}{800}\)
=> x = 799
Bài 2 :
\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right):x=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\) (*)
Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}=\frac{8+4+2+1}{16}=\frac{15}{16}\) (1)
Lại có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{11.12}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\)
\(=1\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{11}+\frac{1}{11}\right)-\frac{1}{12}\)
\(=1-\frac{1}{12}=\frac{11}{12}\) (2)
Thay (1) và (2) vào biểu thức (*) ta được :
\(\frac{15}{16}:x=\frac{11}{12}\)
\(\Leftrightarrow x=\frac{15}{16}:\frac{11}{12}\)
\(\Leftrightarrow x=\frac{45}{44}\)
Vậy : \(x=\frac{45}{44}\)
\(2\frac{3}{4}.\frac{1}{2}-\frac{1}{2}.\frac{3}{7}+\frac{1}{3}\)
\(=\frac{11}{4}.\frac{1}{2}-\frac{1}{2}.\frac{3}{7}+\frac{1}{3}\)
\(=\frac{11}{8}-\frac{3}{14}+\frac{1}{3}\)
\(=\frac{251}{168}\)
Bài 1 : a, thực hiện phép tính :
\(2\frac{3}{4}×\frac{1}{2}-\frac{1}{2}×\frac{3}{7}+\frac{1}{3}\)
\(=\frac{11}{4}×\frac{1}{2}-\frac{1}{2}×\frac{3}{7}+\frac{1}{3}\)
\(=\frac{1}{2}×\left(\frac{11}{4}-\frac{3}{7}\right)+\frac{1}{3}\)
\(=\frac{1}{2}×\frac{65}{28}+\frac{1}{3}\)
\(=\frac{65}{56}+\frac{1}{3}\)
\(=\frac{251}{168}\)
b , Tìm x biết :
a, 435- ( x + 16 ) = 425 : 17
435 - ( x + 16 ) = 25
x + 16 = 435 - 25
x + 16 = 410
x = 410 - 16
x = 394
Vậy x = 394
b, ( x + 3/4 ) × 7/4 = 5 - 7/6
( x + 3/4 ) × 7/4 = 23/6
x + 3/4 = 23/6 : 7/4
x + 3/4 = 23/6 × 4/7
x + 3/4 = 46/21
x = 46/21 - 3/4
x = 121/84
Vậy x = 121/84
\(\left(\frac{5}{3}+\frac{3}{4}\right):\left(\frac{7}{2}-\frac{9}{4}\right)< A< 3\frac{1}{2}-\frac{1}{2}\)
=> \(\left(\frac{20}{12}+\frac{9}{12}\right):\left(\frac{14}{4}-\frac{9}{4}\right)< A< \frac{7}{2}-\frac{1}{2}\)
=> \(\frac{29}{12}:\frac{5}{4}< A< \frac{6}{2}\)
=> \(\frac{29}{15}< A< 3\)
=> A = 2
a, 3 1\3 : 2 1\2 - 1 < x < 7 2\3 . 3\7 + 5\2
10\3 : 5\2 - 1 < x < 23\3 . 3\7 + 5\2
4\3 - 1 < x < 23\7 + 5\2
1\3 < x < 81\14
Ta thấy 1\3 < 1 và 81\14 > 5 suy ra :
Tập hợp X = {1;2;3;4;5}
b,1/2 - (1/3 + 1/4) < x < 1\48 - ( 1\16 - 1\16)
1/2 - 7/12 < x < 1\48 - 0
-1/12 < x < 1/48
Vì -1/12 < 0 và 1/48 > 0 suy ra :
Tập hợp X = {0}
a) 0 <x < 69/14
b) -1/12<x < -5/24