K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2020

giải bài hộ mình trước 5h với các cậu ơi :') yêu lắm ạ

 

11 tháng 12 2020

.

Xét tam giác BMK và tam giác CNK có:

BM=CN (gt)

Góc BKM=góc CKN (hai góc đối đỉnh)

MK=NK (K là trung điểm MN)

=> tam giác BMK=tam giác CNK (c.g.c)

=> BK=CK

=> K là trung điểm BC

=> B,K,C thẳng hàng.

4 tháng 6 2019

#)Giải :

( Hình tự vẽ nha :P )

Xét \(\Delta BMK\)và \(\Delta CNK\)có :

         BM = CN ( gt )

       \(\widehat{BKM}=\widehat{CKN}\)( hai gọc đối đỉnh )

        MK = NK ( K là trung điểm của MN )

=> \(\Delta BMK=\Delta CNK\)( c.g.c )

=> BK = CK ( hai cạnh tương ứng bằng nhau ) 

=> K là trung điểm của BC

=> B,K,C thẳng hàng 

                    #~Will~be~Pens~#

7 tháng 2 2021

giúp tui với!

Bạn kham khảo link này nhé.

Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath

20 tháng 2 2019

a) Xét tam giác ABC và tam giác MNC ta có:

MC=AC ( gt)

BC=NC (gt)

góc NCM = góc BCA ( 2 góc đối đỉnh )

=> tam giác ABC = tam giác MNC ( c.g.c)

b) => góc BAC = góc NMC ( 2 góc tương ứng )

<=> góc NMC=90 độ ( góc BAC=90 độ )

<=> \(AM\perp MN\)

đpcm

c) Tạo hình: gọi D là giao điểm của CE và MN

Có tam giác ABC = tam giác MNC 

=> góc EBC= góc DNC ( 2 góc tương ứng )

Tự c/m: tam giác NDC = tam giác BEC ( g.c.g)

=> ND=BE         ( 2  cạnh tương ứng )

    tam giác AEC = tam giác MDC (  c.g.c )

=> MD=AE ( 2 cạnh tương ứng )

Lại có: AE=BE ( gt )

=> ND=MD 

=> D là trung điểm của MN

=> CE đi qua trung điểm MN 

                         đpcm

Câu 1:a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.Câu 3: Cho \(\Delta ABC\),...
Đọc tiếp

Câu 1:

a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.

b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)

Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.

Câu 3: Cho \(\Delta ABC\), trung tuyến CD. Đường thẳng qua D và song song với BC cắt AC tại E. Đường thẳng qua D và song song với AC cắt BC tại F. Trên tia đối của tia BD lấy N sao cho BN=BD. Trên tia đối của tia CB lấy M sao cho CM=CF, gọi giao điểm của MD và AC là K. C/m N, F, K thẳng hàng.

Câu 4: Cho \(\Delta ABC\)có BC=2AB. Gọi M, I lần lượt là trung điểm của BC và BM. C/m AC=2AI và AM là tia phân giác của\(\widehat{CAI}\).

Câu 5: Cho \(\Delta ABC\),trung tuyến BM. Trên tia BM lấy 2 điểm G và K sao cho \(BG=\frac{2}{3}BM\) và G là trung điểm BK, gọi N là trung điểm KC , GN cắt CN tại O. C/m: \(GO=\frac{1}{3}BC\)  

(Bạn giải được câu nào thì giải, nhớ vẽ hình và ghi lời giải đầy đủ) 

0
18 tháng 5 2019

A B C N I O M 1 1 2

a,

\(\text{Xét ∆MOB và ∆NOI có }\)

 \(\text{MO = NO (gt) }\)

 \(\text{ BO = OI (gt) }\) 

\(\widehat{MOB}=\widehat{NOI}\)\(\text{(2 góc đối đỉnh) }\)

\(\Rightarrow\text{∆MOB = ∆NOI }\left(c.g.c\right)\) 

b, 

\(\text{ Vì ∆MOB = ∆NOI ( câu a) }\)

 \(\Rightarrow\text{ MB = NI }\)

    \(\text{BM = CN }\)

\(\Rightarrow\text{ NI = NC }\)

=>\(\text{∆NIC là ∆ cân }\)

c, \(\text{Vì ∆MOB = ∆NOI ( câu a) }\)

=> \(\widehat{B_1}=\widehat{C_1}\)   

\(\text{Mà 2 góc ở vị trí so le trong }\)

=>\(\text{ BM // NI }\)

=> \(\text{AB // NI }\)

=> \(\widehat{BAN}=\widehat{ANI}\)  hay \(\widehat{BAC}=\widehat{ANI}\) (1) 

\(\text{mà}\) \(\widehat{ANI}\)\(\text{là góc ngoài ∆INC }\)

=> \(\widehat{ANI}\)\(\widehat{I_2}+\widehat{IC}N\)

\(\text{Vì ∆NIC cân }\)=> \(\widehat{I_2}=\widehat{ICN}\) 

=> \(\widehat{ANI}=2\widehat{I_2}\)   (2) 

Từ 1,2  =>   \(\widehat{BAC}=2\widehat{I_2}\)

hay \(\widehat{BAC}=2\widehat{NIC}\)

15 tháng 12 2016

Ta có hình vẽ:

B C A D E N M

a/ Xét tam giác ABC và tam giác AED có:

BA = AE (GT)

góc BAC = góc DAE (đối đỉnh)

CA = AD (GT)

=> tam giác ABC = tam giác AED (c.g.c)

b/ Ta có: tam giác ABC = tam giác AED (câu a)

=> góc DEA = góc ABC (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> BC // DE (đpcm)

c/ Ta có: BC // DE (đã chứng minh trên)

=> góc DNA = góc AMC so le trong

=> đường MN qua A

hay NA trùng AM

hay N,A,M thẳng hàng