Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: BC=căn 15^2+20^2=25cm
AH=15*20/25=12cm
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
=>DE=AH=12cm
b: ΔAHB vuông tại H có HD vuông góc AB
nên AD*AB=AH^2
ΔAHC vuông tại H có HE vuông góc AC
nên AE*AC=AH^2
=>AD*AB=AE*AC
c: góc IAC+góc AED
=góc ICA+góc AHD
=góc ACB+góc ABC=90 độ
=>AI vuông góc ED
4:
a: góc BDH=góc BEH=góc DBE=90 độ
=>BDHE là hình chữ nhật
b: BDHE là hình chữ nhật
=>góc BED=góc BHD=góc A
Xét ΔBED và ΔBAC có
góc BED=góc A
góc EBD chung
=>ΔBED đồng dạng với ΔBAC
=>BE/BA=BD/BC
=>BE*BC=BA*BD
c: góc MBC+góc BED
=góc C+góc BHD
=góc C+góc A=90 độ
=>BM vuông góc ED
Câu 1 :
a. \(4x-5=23\\ \Leftrightarrow4x=23+5\\ \Leftrightarrow4x=28\\ \Leftrightarrow x=7\)
b.
|-2x|=5x+14
Nếu - 2x > 0 => x < 0 thì |-2x|= - 2x, ta có pt: -2x = 5x+14
<=> - 2x = 5x + 14
<=> - 2x - 5x = 14
<=> - 7x = 14
<=> x = - 2 (thoã mãn)
Nếu - 2x < 0 => x > 0 thì |-2x|= = -(- 2x) = 2x.
Ta có pt: 2x = 5x + 14
<=> - 3x = 14
<=> x = \(-\dfrac{14}{3}\)
Vậy pt có nghiệm x = - 2
c) \(\dfrac{x+1}{x-1}-\dfrac{1}{x+1}=\dfrac{x^2+2}{x^2-1}\\ ĐKXĐ:x\ne1;x\ne-1\\ \Leftrightarrow\dfrac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{1\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2+2}{\left(x-1\right)\left(x+1\right)}\\ \Leftrightarrow x^2+x+x+1-x+1=x^2+2\\ \Leftrightarrow x^2+x+x-x-x^2=2-1-1\\ \Leftrightarrow x=0\left(nhận\right)\)
\(a,4x-5=23\)
\(\Leftrightarrow4x=23+5\)
\(\Leftrightarrow4x=28\)
\(\Leftrightarrow x=7\)
\(b,\left|-2x\right|=5x+14\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=5x+14\\2x=-5x-14\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x-14=0\\7x+14=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x=14\\7x=-14\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{14}{3}\\x=-2\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{14}{3};-2\right\}\)
\(c,\Leftrightarrow\dfrac{\left(x+1\right)\left(x+1\right)-x+1-x^2-2}{x^2-1}=0\)
\(\Leftrightarrow x^2+x+x+1-x+1-x^2-2=0\)
\(\Leftrightarrow x=0\)
Vậy \(S=\left\{0\right\}\)
Gọi số học sinh lớp 8A phải góp là x(học sinh)(ĐK: x>4)
Dự kiến số tiền học sinh lớp 8A phải góp là :2000x(đồng)
Thức tế số học sinh lớp 8A phải góp là x-4(học sinh)
Thực tế số tiền mà học sinh lớp 8A phải góp là (x-4)(2000+1000)=(x-4)3000(đồng)
Theo bài ra ta có:
(x-4)3000-2000x=28000
3000x-12000-2000x=28000
1000x=28000+12000
1000x=40000
x=40000:1000
x=40(thỏa mãn điều kiện x>4)
Vậy số học sinh lopứ 8A là 40 học sinh
Gọi số học sinh lớp 8A phải góp là x(học sinh)(ĐK: x>4)
Dự kiến số tiền học sinh lớp 8A phải góp là :2000x(đồng)
Thức tế số học sinh lớp 8A phải góp là x-4(học sinh)
Thực tế số tiền mà học sinh lớp 8A phải góp là (x-4)(2000+1000)=(x-4)3000(đồng)
Theo bài ra ta có:
(x-4)3000-2000x=28000
3000x-12000-2000x=28000
1000x=28000+12000
1000x=40000
x=40000:1000
x=40(thỏa mãn điều kiện x>4)
Vậy số học sinh lớp 8A là 40 học sinh
Đối với lớp 8 cái này khó; giải theo cách bình thường nha
+) Giả sử \(abc\) không chia hết cho 3 \(\Rightarrow a;b;c\) không chia hết cho 3
\(\Rightarrow a^2;b^2;c^2\)chia 3 dư 1 \(\Rightarrow a^2+b^2\) chia 3 dư 2
Mà \(c^2\) chia 3 dư 1 nên \(a^2+b^2\ne c^2\) => Điều giả sử sai
Vậy \(abc⋮3\) (1)
+) Giả sử \(abc\) không chia hết cho 4 \(\Rightarrow a;b;c\) không chia hết cho 4
\(\Rightarrow\)\(a^2;b^2;c^2\)chia 4 dư 1 \(\Rightarrow a^2+b^2\) chia 4 dư 2
Mà \(c^2\)chia 4 dư 1 nên \(a^2+b^2\ne c^2\)=> Điều giả sử sai
Vậy \(abc⋮4\)(2)
+) +) Giả sử \(abc\) không chia hết cho 5 \(\Rightarrow a;b;c\) không chia hết cho 5
\(\Rightarrow a^2;b^2;c^2\) chia 5 dư 1;4 \(\Rightarrow a^2+b^2\) chia hết cho 5
Mà \(c^2\)chia 5 dư 1;4 nên \(a^2+b^2\ne c^2\) => Điều giả sử sai
Vậy \(abc⋮5\)(3)
Mà (3;4;5) = 1 nên từ (1);(2);(3) \(\Rightarrow abc⋮60\)(đpcm)
Ta có; 60 = 3.4.5
Đặt M = abc
Nếu a, b, c đều không chia hết cho 3 => a2, b2 và c2 chia hết cho 3 đều dư 1=> a2 khác b2 + c2 .Do đó có ít nhất 1 số chia hết cho 3. Vậy M \(⋮\)3
Nếu a, b, c đều không chia hết cho 5 => a2, b2 và c2 chia 5 dư 1 hoặc 4
=> b2 + c2 chia 5 thì dư 2; 0 hoặc 3.
=> a2 khác b2 + c2. Do đó có ít nhất 1 số chia hết cho 5. Vậy M \(⋮\) 5
Nếu a, b, c là các số lẻ => b2 và c2 chia hết cho 4 dư 1.
=> b2 + c2 = 4 dư 1 => a2 khác b2 + c2
Do đó 1 trong 2 số a, b phải là số chẵn
Giả sử b là số chẵn
Nếu c là số chẵn => M \(⋮\) 4
Nếu c là số lẻ mà a2 = b2 + c2 => a là số lẻ
\(\Rightarrow b^2=\left(a-c\right)\left(a+b\right)\Rightarrow\left(\frac{b}{2}\right)^2=\left(\frac{a+c}{2}\right)\left(\frac{a-c}{2}\right)\)
\(\Rightarrow\frac{b}{2}\)chẵn \(\Rightarrow b⋮4\Rightarrow M⋮4\)
Vậy M = abc \(⋮\)3 . 4. 5 = 60