Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét phương trình hoành độ giao điểm của (d) và (p):
\(x^2=x+m-1\)
\(\Leftrightarrow x^2-x-m+1=0\left(1\right)\)
Xét phương trình (1) có:
\(\Delta=\left(-1\right)^2-4\left(-m+1\right)=4m-3\)
Để (d) cắt (p) tại 2 điểm thì phương trình (1) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta>0\Leftrightarrow4m-3>0\Leftrightarrow m>\dfrac{3}{4}\)
Áp dụng hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1.x_2=1-m\end{matrix}\right.\)
Theo đề bài ta có:
\(4\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+3=0\)
\(\Leftrightarrow\dfrac{4\left(x_1+x_2\right)}{x_1x_2}-x_1x_2+3=0\)
\(\Leftrightarrow\dfrac{4}{1-m}-\left(1-m\right)+3=0\left(m\ne1\right)\)
\(\Leftrightarrow4-\left(1-m\right)^2+3\left(1-m\right)=0\)
\(\Leftrightarrow m^2+m-6=0\)
\(\Leftrightarrow\left(m-2\right)\left(m+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m-2=0\\m+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\left(tm\right)\\m=-3\left(ktm\right)\end{matrix}\right.\)
Vậy để (d)cắt (p) tại 2 điểm có hoành độ \(x_1,x_2\) thỏa mãn \(4\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+3=0\) thì m=2

1, đk: \(x>0\) và \(x\ne4\)
Ta có: A=\(\dfrac{1}{2\sqrt{x}-x}=\dfrac{1}{-\left(x-2\sqrt{x}+1\right)+1}=\dfrac{1}{-\left(\sqrt{x}-1\right)^2+1}\)
Ta luôn có: \(-\left(\sqrt{x}-1\right)^2\le0\) với \(x>0\) và \(x\ne4\)
\(\Rightarrow-\left(\sqrt{x}-1\right)^2+1\le1\)
\(\Rightarrow A\ge1\). Dấu "=" xảy ra <=> x=1 (t/m)
Vậy MinA=1 khi x=1
2, đk: \(x\ge0;x\ne1;x\ne9\)
Ta có: B=\(\dfrac{1}{x-4\sqrt{x}+3}=\dfrac{1}{\left(x-4\sqrt{x}+4\right)-1}=\dfrac{1}{\left(\sqrt{x}-2\right)^2-1}\)
Ta luôn có: \(\left(\sqrt{x}-2\right)^2\ge0\) với \(x\ge0;x\ne1;x\ne9\)
\(\Rightarrow\left(\sqrt{x}-2\right)^2-1\ge-1\)
\(\Rightarrow B\le-1\). Dấu "=" xảy ra <=> x=4 (t/m)
Vậy MaxB=-1 khi x=4
3, đk: \(x\ge0;x\ne15+4\sqrt{11}\)
Ta có: C=\(\dfrac{1}{4\sqrt{x}-x+7}=\dfrac{1}{-\left(x-4\sqrt{x}+4\right)+11}=\dfrac{1}{-\left(\sqrt{x}-2\right)^2+11}\)
Ta luôn có: \(-\left(\sqrt{x}-2\right)^2\le0\) với \(x\ge0;x\ne15+4\sqrt{11}\)
\(\Rightarrow-\left(\sqrt{x}-2\right)^2+11\le11\)
\(\Rightarrow C\ge\dfrac{1}{11}\). Dấu "=" xảy ra <=> x=4 (t/m)
Vậy MinC=\(\dfrac{1}{11}\) khi x=4

\(\Delta^`\ge0\)
\(\Leftrightarrow m^2-\left(m^2-2\right).2\ge0\)
\(\Leftrightarrow4-m^2\ge0\)
\(\Leftrightarrow4\ge m^2\)
\(\Leftrightarrow4\ge m^2\)
\(\Leftrightarrow-2\le m\le2\)
Theo hệ thức Viet có:
\(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=\frac{m^2-2}{2}\end{cases}}\)
\(\Rightarrow A=\left|2x_1.x_2-x_1-x_2-4\right|=\left|m^2-m-6\right|=\left|\left(m-\frac{1}{2}\right)^2-6,25\right|\)
Có:
\(\left(m-\frac{1}{2}\right)^2\le\left(-2-\frac{1}{2}\right)^2=6,25\)
\(\Rightarrow A=\left|\left(m-\frac{1}{2}\right)^2-6,25\right|=6,25-\left(m-\frac{1}{2}\right)^2\le6,25\)
\(A=6,25\Leftrightarrow m=\frac{1}{2}\left(tm\right)\)
KL:..............................................


Ta có: \(\Delta=\) \(\left(m-2\right)^2+4.8>0\)
=> Phương trình luôn có hai nghiệm \(x_1;x_2\)phân biệt.
Áp dụng định lí Viet ta có: \(\hept{\begin{cases}x_1+x_2=-m+2\\x_1.x_2=-8\end{cases}}\)=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(-m+2\right)^2+16\)
Khi đó: \(Q=\left(x_1^2-1\right)\left(x_2^2-1\right)=x_1^2.x_2^2-\left(x_1^2+x_2^2\right)+1=8^2-\left(m-2\right)^2-16+1\)
\(=-\left(m-2\right)^2+49\le49\)
Vậy min Q = 49 tại m=2

câu b bạn phân tích x2 +5x + 6 =(x+2 )(x+3) và 3x -x2 = x(3-x ) rồi đặtnhân tử chung tương tự câu a ,
=\(\dfrac{x+3+2\sqrt{\left(x-3\right)\left(x+3\right)}}{2\left(x-3\right)+\sqrt{\left(x-3\right)\left(x+3\right)}}\)
=\(\dfrac{\sqrt{x+3}\left(\sqrt{x+3}+2\sqrt{x-3}\right)}{\sqrt{x-3}\left(2\sqrt{x-3}+\sqrt{x+3}\right)}\)
=\(\dfrac{\sqrt{x+3}}{\sqrt{x-3}}\)