K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

\(a,\Leftrightarrow3m-2+m-2=2\\ \Leftrightarrow m=\dfrac{3}{2}\\ b,\text{PT giao Ox: }y=0\Leftrightarrow x=\dfrac{2-m}{3m-2}\Leftrightarrow OA=\left|\dfrac{m-2}{3m-2}\right|\\ \text{PT giao Oy: }x=0\Leftrightarrow y=m-2\Leftrightarrow OB=\left|m-2\right|\\ \Leftrightarrow S_{AOB}=\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\cdot\left|\dfrac{m-2}{3m-2}\cdot\left(m-2\right)\right|=\dfrac{1}{2}\\ \Leftrightarrow\dfrac{\left(m-2\right)^2}{\left|3m-2\right|}=1\\ \Leftrightarrow\left|3m-2\right|=\left(m-2\right)^2\Leftrightarrow\left[{}\begin{matrix}3m-2=m^2-4m+4\left(m\ge\dfrac{2}{3}\right)\\2-3m=m^2-4m+4\left(m< \dfrac{2}{3}\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m^2-7m+6=0\left(m\ge\dfrac{2}{3}\right)\\m^2-m+2=0\left(vn\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=6\end{matrix}\right.\)

21 tháng 12 2021

kbt thì ko cần ghi v đâu nha

bt thì ghi đáp án

Bài 4: 

a: Xét tứ giác OBAC có 

\(\widehat{OBA}+\widehat{OCA}=180^0\)

Do đó: OBAC là tứ giác nội tiếp

hay O,B,A,C cùng thuộc 1 đường tròn

4 tháng 11 2021

Bài 5:

\(\sqrt{x+2021}-y^3=\sqrt{y+2021}-x^3\\ \Leftrightarrow\left(\sqrt{x+2021}-\sqrt{y+2021}\right)+\left(x^3-y^3\right)=0\\ \Leftrightarrow\dfrac{x-y}{\sqrt{x+2021}+\sqrt{y+2021}}+\left(x-y\right)\left(x^2+xy+y^2\right)=0\\ \Leftrightarrow\left(x-y\right)\left(\dfrac{1}{\sqrt{x+2021}+\sqrt{y+2021}}+x^2+xy+y^2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-y=0\\\dfrac{1}{\sqrt{x+2021}+\sqrt{y+2021}}+x^2+xy+y^2=0\left(1\right)\end{matrix}\right.\)

Dễ thấy \(\left(1\right)>0\) với mọi x,y

Do đó \(x-y=0\) hay \(x=y\)

\(\Leftrightarrow M=x^2+2x^2-2x^2+2x+2022=x^2+2x+1+2021\\ \Leftrightarrow M=\left(x+1\right)^2+2021\ge2021\)

Dấu \("="\Leftrightarrow x=y=-1\)

Bài 18:

a: Ta có: \(P=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)^2\cdot\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(=\dfrac{\left(\sqrt{a}-1\right)^2\cdot\left(\sqrt{a}+1\right)^2}{4a}\cdot\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{\left(a-1\right)\cdot\left(-4\right)\cdot\sqrt{a}}{4a}\)

\(=\dfrac{-a+1}{\sqrt{a}}\)

b: Để P<0 thì -a+1<0

\(\Leftrightarrow-a< -1\)

hay a>1

c: Để P=-2 thì \(-a+1=-2\sqrt{a}\)

\(\Leftrightarrow-a+1+2\sqrt{a}=0\)

\(\Leftrightarrow a-2\sqrt{a}+1=2\)

\(\Leftrightarrow\left(\sqrt{a}-1\right)^2=2\)

\(\Leftrightarrow\sqrt{a}-1=\sqrt{2}\)

hay \(a=3+2\sqrt{2}\)

Bài 17:

a: Ta có: \(P=\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)

\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}+\dfrac{a-1}{\sqrt{a}}\cdot\dfrac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{a-1}\)

\(=2+\dfrac{2a+2}{\sqrt{a}}\)

\(=\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\)

3 tháng 5 2023

ĐK: \(\left\{{}\begin{matrix}x\ne-y\\y\ge\dfrac{3}{2}\end{matrix}\right.\).

\(\left\{{}\begin{matrix}\dfrac{2x-y+3}{x+y}=1\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x-y+3}{x+y}-1=0\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x-y+3}{x+y}-\dfrac{x+y}{x+y}=0\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y+3-x-y=0\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2y+3=0\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-\left(2y-3\right)=0\\2x-\sqrt{2y-3}=0\end{matrix}\right..\)

Đặt a = x, b = \(\sqrt{2y-3}\).

Hệ phương trình trở thành: \(\left\{{}\begin{matrix}a-b^2=0\\2a-b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b^2\\2b^2-b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b^2\\b\left(2b-1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b^2\\\left[{}\begin{matrix}b=0\\b=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\left\{{}\begin{matrix}\left[{}\begin{matrix}a=0\\a=\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}b=0\\b=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}y=\dfrac{3}{2}\\2y-3=\dfrac{1}{4}\end{matrix}\right.\end{matrix}\right.\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}y=\dfrac{3}{2}\\2y=\dfrac{13}{4}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}y=\dfrac{3}{2}\\y=\dfrac{13}{8}\end{matrix}\right.\end{matrix}\right..\)

Vậy hệ phương trình có nghiệm (x;y) \(\in\) \(\left\{\left(0;\dfrac{3}{2}\right),\left(\dfrac{1}{4};\dfrac{13}{8}\right)\right\}\).

 

24 tháng 7 2021

undefined

undefined

Bài 3:

a) Thay x=9 vào A, ta được:

\(A=\dfrac{3+2}{3-5}=\dfrac{5}{-2}=\dfrac{-5}{2}\)

b) Ta có: M=B:A

\(=\left(\dfrac{x+3\sqrt{x}}{x-25}+\dfrac{1}{\sqrt{x}-5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)

\(=\dfrac{x+3\sqrt{x}+\sqrt{x}+5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(=\dfrac{x+4\sqrt{x}+5}{x+7\sqrt{x}+10}\)