Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)....\left(1+\frac{1}{99}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.......\frac{100}{99}\)
\(=\frac{3.4.5....100}{2.3.4.....99}\)
\(=\frac{100}{2}=50\)
a) Ta có:
\(1-\frac{2009}{2010}=\frac{1}{2010}\)
\(1-\frac{2010}{2011}=\frac{1}{2011}\)
Vì \(\frac{1}{2010}>\frac{1}{2011}\)=> \(\frac{2009}{2010}<\frac{2010}{2011}\)
b) Ta có:
\(\frac{1}{3^{400}}=\frac{1}{\left(3^4\right)^{100}}=\frac{1}{81^{100}}\)
\(\frac{1}{4^{300}}=\frac{1}{\left(4^3\right)^{100}}=\frac{1}{64^{100}}\)
Vì 81100 > 64100 => \(\frac{1}{81^{100}}<\frac{1}{64^{100}}\)=> \(\frac{1}{3^{400}}<\frac{1}{4^{300}}\)
c) Ta có:
\(\frac{2008}{2008\cdot2009}=\frac{1}{2009}\)
\(\frac{2009}{2009\cdot2010}=\frac{1}{2010}\)
Vì \(\frac{1}{2009}>\frac{1}{2010}\) => \(\frac{2008}{2008\cdot2009}>\frac{2009}{2009\cdot2010}\)
d) Ta có:
\(\frac{200}{201}+\frac{201}{202}=\frac{200\cdot202+201^2}{201\cdot202}>1\)
\(\frac{200+201}{201+202}=\frac{401}{403}<1\)
=> \(\frac{200\cdot202+201^2}{201\cdot202}>\frac{401}{403}\)=> \(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
a)ta có:
\(1-\frac{2009}{2010}=\frac{1}{2010};1-\frac{2010}{2011}=\frac{1}{2011}\)
dự vào công thức so sánh phần bù
vì \(\frac{1}{2010}>\frac{1}{2011}\Rightarrow\frac{2010}{2011}>\frac{2009}{2010}\)
b)\(\frac{1}{3^{400}}=\frac{1}{\left(3^4\right)^{100}}=\frac{1}{81^{100}}\)
\(\frac{1}{4^{300}}=\frac{1}{\left(4^3\right)^{100}}=\frac{1}{64^{100}}\)
Vì \(\frac{1}{81^{100}}<\frac{1}{64^{100}}\Rightarrow\)\(\frac{1}{3^{400}}<\frac{1}{4^{300}}\)
c)\(\frac{2008}{2008.2009}=\frac{1}{2009};\frac{2009}{2009.2010}=\frac{1}{2010}\)
vì \(\frac{1}{2009}>\frac{1}{2010}\Rightarrow\frac{2008}{2008.2009}>\frac{2009}{2009.2010}\)
d)tính tổng hai vế rồi so sánh
1)
A = \(\frac{3}{8}+\frac{4}{9}+\frac{1}{3}\)
A = \(\frac{27}{72}+\frac{32}{72}+\frac{24}{72}\)
A = \(\frac{83}{72}\)
Vì \(\frac{83}{72}>1\)nên A > 1
B = \(\frac{4}{15}+\frac{4}{13}+\frac{1}{3}\)
B = \(\frac{52}{195}+\frac{60}{195}+\frac{65}{195}\)
B = \(\frac{177}{195}\)
Vì \(\frac{177}{195}< 1\)nên B < 1
a, Ta có : 3/8 > 3/9 = 1/3
4/9 > 3/9 = 1/3
=> A > 1/3 + 1/3 + 1/3 = 1
b, Ta có : 4/15 < 5/15 = 1/3
4/13 < 4/12 = 1/3
=> B < 1/3 + 1/3 + 1/3 = 1
Tk mk nha
Bài 1:\(A=1-\frac{1}{2}+1-\frac{1}{6}+.......+1-\frac{1}{9900}\)
\(=1-\frac{1}{1.2}+1-\frac{1}{2.3}+........+1-\frac{1}{99.100}\)
\(=99-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\right)=99-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)\)
\(=99-\left(1-\frac{1}{100}\right)=99-\frac{99}{100}=\frac{9801}{100}\)
Bài 2:\(A=\frac{1}{299}.\left(\frac{299}{1.300}+\frac{299}{2.301}+.........+\frac{299}{101.400}\right)\)
\(=\frac{1}{299}.\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+.........+\frac{1}{101}-\frac{1}{400}\right)\)
\(=\frac{1}{299}.\left(1+\frac{1}{2}+......+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-.......-\frac{1}{400}\right)\)
\(=\frac{1}{299}.\left[\left(1+\frac{1}{2}+.......+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+......+\frac{1}{400}\right)\right]\)(đpcm)
1/
\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{9900}\right)\)
\(=\left(1+1+...+1\right)\left(50so\right)-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\right)\)
\(=50-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=50-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=50-\left(1-\frac{1}{100}\right)=49+\frac{1}{100}=\frac{4901}{100}\)
2/
\(=\frac{1}{299}\left(\frac{299}{1.300}+\frac{299}{2.301}+...+\frac{299}{101.400}\right)\)
\(=\frac{1}{299}\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...+\frac{1}{101}-\frac{1}{400}\right)\)
\(=\frac{1}{299}\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]\)
Ta có
\(\frac{1}{3^{400}}=\frac{1}{\left(3^4\right)^{100}};\frac{1}{4^{300}}=\frac{1}{\left(4^3\right)^{100}}\)
\(\Rightarrow\frac{1}{3^4}< \frac{1}{4^3}\left(3^4>4^3\right)\\ \Rightarrow\frac{1}{3^{400}}< \frac{1}{4^{300}}\)
đúng ko bn